Beta-negative binomial nonlinear spatio-temporal random effects modeling of COVID-19 case counts in Japan
Masao Ueki
Journal of Applied Statistics, 2023, vol. 50, issue 7, 1650-1663
Abstract:
Coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has spread seriously throughout the world. Predicting the spread, or the number of cases, in the future can facilitate preparation for, and prevention of, a worst-case scenario. To achieve these purposes, statistical modeling using past data is one feasible approach. This paper describes spatio-temporal modeling of COVID-19 case counts in 47 prefectures of Japan using a nonlinear random effects model, where random effects are introduced to capture the heterogeneity of a number of model parameters associated with the prefectures. The negative binomial distribution is frequently used with the Paul-Held random effects model to account for overdispersion in count data; however, the negative binomial distribution is known to be incapable of accommodating extreme observations such as those found in the COVID-19 case count data. We therefore propose use of the beta-negative binomial distribution with the Paul-Held model. This distribution is a generalization of the negative binomial distribution that has attracted much attention in recent years because it can model extreme observations with analytical tractability. The proposed beta-negative binomial model was applied to multivariate count time series data of COVID-19 cases in the 47 prefectures of Japan. Evaluation by one-step-ahead prediction showed that the proposed model can accommodate extreme observations without sacrificing predictive performance.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2022.2064439 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:50:y:2023:i:7:p:1650-1663
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2022.2064439
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().