EconPapers    
Economics at your fingertips  
 

A comparison of single- and double-threshold ROC plots for mixture distributions

Faryal Ibrar, Sajid Ali and Ismail Shah

Journal of Applied Statistics, 2024, vol. 51, issue 2, 256-278

Abstract: The receiver operating characteristics (ROC) analysis is commonly used in clinical settings to check the performance of a single threshold for distinguishing population-wise bimodal-distributed test results. However, for population-wise three-modal distributed test results, a single threshold ROC (stROC) analysis showed poor discriminative performance. The purpose of this study is to use a double-threshold ROC analysis for the three-modal distributed test results to provide better discriminative performance than the stROC analysis. A double-threshold receiver operating characteristic plot (dtROC) is constructed by replacing the single threshold with a double threshold. The sensitivity and specificity coordinates are chosen to maximize sensitivity for a given specificity value. Besides a simulation study assuming a mixture of lognormal, Poisson, and Weibull distributions, a clinical application is examined by a secondary data analysis of palpation test results of the C7 spinous process using the modified thorax–rib static technique. For the assumed mixture models, the discrimination performance of dtROC analysis outperforms the stROC analysis (area under ROC (AUROC) increased from 0.436 to 0.983 for lognormal distributed test results, 0.676 to 0.752 for the Poisson distribution, and 0.674 to 0.804 for Weibull distribution).

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2022.2122027 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:51:y:2024:i:2:p:256-278

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2022.2122027

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:51:y:2024:i:2:p:256-278