Robust and efficient subsampling algorithms for massive data logistic regression
Jun Jin,
Shuangzhe Liu and
Tiefeng Ma
Journal of Applied Statistics, 2024, vol. 51, issue 8, 1427-1445
Abstract:
Datasets that are big with regard to their volume, variety and velocity are becoming increasingly common. However, limitations in computer processing can often restrict analysis performed on them. Nonuniform subsampling methods are effective in reducing computational loads for massive data. However, the variance of the estimator of nonuniform subsampling methods becomes large when the subsampling probabilities are highly heterogenous. To this end, we develop two new algorithms to improve the estimation method for massive data logistic regression based on a chosen hard threshold value and combining subsamples, respectively. The basic idea of the hard threshold method is to carefully select a threshold value and then replace subsampling probabilities lower than the threshold value with the chosen value itself. The main idea behind the combining subsamples method is to better exploit information in the data without hitting the computation bottleneck by generating many subsamples and then combining estimates constructed from the subsamples. The combining subsamples method obtains the standard error of the parameter estimator without estimating the sandwich matrix, which provides convenience for statistical inference in massive data, and can significantly improve the estimation efficiency. Asymptotic properties of the resultant estimators are established. Simulations and analysis of real data are conducted to assess and showcase the practical performance of the proposed methods.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2023.2205611 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:51:y:2024:i:8:p:1427-1445
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2023.2205611
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().