EconPapers    
Economics at your fingertips  
 

Full Bayesian analysis of double seasonal autoregressive models with real applications

Ayman A. Amin

Journal of Applied Statistics, 2024, vol. 51, issue 8, 1524-1544

Abstract: We present a full Bayesian analysis of multiplicative double seasonal autoregressive (DSAR) models in a unified way, considering identification (best subset selection), estimation, and prediction problems. We assume that the DSAR model errors are normally distributed and introduce latent variables for the model lags, and then we embed the DSAR model in a hierarchical Bayes normal mixture structure. By employing the Bernoulli prior for each latent variable and the mixture normal and inverse gamma priors for the DSAR model coefficients and variance, respectively, we derive the full conditional posterior and predictive distributions in closed form. Using these derived conditional posterior and predictive distributions, we present the full Bayesian analysis of DSAR models by proposing the Gibbs sampling algorithm to approximate the posterior and predictive distributions and provide multi-step-ahead predictions. We evaluate the efficiency of the proposed full Bayesian analysis of DSAR models using an extensive simulation study, and we then apply our work to several real-world hourly electricity load time series datasets in 16 European countries.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2023.2211754 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:51:y:2024:i:8:p:1524-1544

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2023.2211754

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:51:y:2024:i:8:p:1524-1544