EconPapers    
Economics at your fingertips  
 

Depth-based statistical analysis in the spike train space

Xinyu Zhou and Wei Wu

Journal of Applied Statistics, 2025, vol. 52, issue 2, 329-355

Abstract: Metric-based summary statistics such as mean and covariance have been introduced in neural spike train space. They can properly describe template and variability in spike train data, but are often sensitive to outliers and expensive to compute. Recent studies also examine outlier detection and classification methods on point processes. These tools provide reasonable result, whereas the accuracy remains at a low level in certain cases. In this study, we propose to adopt a well-established notion of statistical depth to the spike train space. This framework can naturally define the median in a set of spike trains, which provides a robust description of the ‘template’ of the observations. It also provides a principled method to identify ‘outliers’ and classify data from different categories. We systematically compare the new median, outlier detection and classification tools with state-of-the-art competing methods. The result shows the median has superior description for template than the mean. Moreover, the proposed outlier detection and classification perform more accurately than previous methods.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2024.2369954 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:52:y:2025:i:2:p:329-355

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2024.2369954

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-22
Handle: RePEc:taf:japsta:v:52:y:2025:i:2:p:329-355