Efficient non-parametric estimation of variable productivity Hawkes processes
Sophie Phillips and
Frederic Schoenberg
Journal of Applied Statistics, 2025, vol. 52, issue 7, 1405-1422
Abstract:
Several approaches to estimating the productivity function for a Hawkes point process with variable productivity are discussed, improved upon, and compared in terms of their root-mean-squared error and computational efficiency for various data sizes, and for binned as well as unbinned data. We find that for unbinned data, a regularized version of the analytic maximum likelihood estimator proposed by Schoenberg is the most accurate but is computationally burdensome. The unregularized version of the estimator is faster to compute but has lower accuracy, though both estimators outperform empirical or binned least squares estimators in terms of root-mean-squared error, especially when the mean productivity is 0.2 or greater. For binned data, binned least squares estimates are highly efficient both in terms of computation time and root-mean-squared error. An extension to estimating transmission time density is discussed, and an application to estimating the productivity of Covid-19 in the United States as a function of time from January 2020 to July 2022 is provided.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2024.2426019 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:52:y:2025:i:7:p:1405-1422
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2024.2426019
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().