Journal of the American Statistical Association
2008 - 2024
Continuation of Journal of the American Statistical Association. Current editor(s): Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson From Taylor & Francis Journals Bibliographic data for series maintained by Chris Longhurst (). Access Statistics for this journal.
Is something missing from the series or not right? See the RePEc data check for the archive and series.
Volume 119, issue 548, 2024
- Statistical Foundations Driving 21st Century Innovation pp. 2427-2436

- Katherine B. Ensor
- An Efficient Coalescent Model for Heterochronously Sampled Molecular Data pp. 2437-2449

- Lorenzo Cappello, Amandine Véber and Julia A. Palacios
- Dissecting Gene Expression Heterogeneity: Generalized Pearson Correlation Squares and the K-Lines Clustering Algorithm pp. 2450-2463

- Jingyi Jessica Li, Heather J. Zhou, Peter J. Bickel and Xin Tong
- Joint Tensor Modeling of Single Cell 3D Genome and Epigenetic Data with Muscle pp. 2464-2477

- Kwangmoon Park and Sündüz Keleş
- Generalizing the Intention-to-Treat Effect of an Active Control from Historical Placebo-Controlled Trials: A Case Study of the Efficacy of Daily Oral TDF/FTC in the HPTN 084 Study pp. 2478-2492

- Qijia He, Fei Gao, Oliver Dukes, Sinead Delany-Moretlwe and Bo Zhang
- Efficient Stochastic Generators with Spherical Harmonic Transformation for High-Resolution Global Climate Simulations from CESM2-LENS2 pp. 2493-2507

- Yan Song, Zubair Khalid and Marc G. Genton
- Sparse Independent Component Analysis with an Application to Cortical Surface fMRI Data in Autism pp. 2508-2520

- Zihang Wang, Irina Gaynanova, Aleksandr Aravkin and Benjamin B. Risk
- Statistical Inference of Cell-Type Proportions Estimated from Bulk Expression Data pp. 2521-2532

- Biao Cai, Jingfei Zhang, Hongyu Li, Chang Su and Hongyu Zhao
- Functional Integrative Bayesian Analysis of High-Dimensional Multiplatform Clinicogenomic Data pp. 2533-2547

- Rupam Bhattacharyya, Nicholas C. Henderson and Veerabhadran Baladandayuthapani
- Ultimate Pólya Gamma Samplers–Efficient MCMC for Possibly Imbalanced Binary and Categorical Data pp. 2548-2559

- Gregor Zens, Sylvia Frühwirth-Schnatter and Helga Wagner
- Bayesian Inference on High-Dimensional Multivariate Binary Responses pp. 2560-2571

- Antik Chakraborty, Rihui Ou and David B. Dunson
- Discovery and Inference of a Causal Network with Hidden Confounding pp. 2572-2584

- Li Chen, Chunlin Li, Xiaotong Shen and Wei Pan
- A Regression-Based Approach to Robust Estimation and Inference for Genetic Covariance pp. 2585-2597

- Jianqiao Wang, Sai Li and Hongzhe Li
- Copula Modeling of Serially Correlated Multivariate Data with Hidden Structures pp. 2598-2609

- Robert Zimmerman, Radu V. Craiu and Vianey Leos-Barajas
- The Cellwise Minimum Covariance Determinant Estimator pp. 2610-2621

- Jakob Raymaekers and Peter Rousseeuw
- Controlling Cumulative Adverse Risk in Learning Optimal Dynamic Treatment Regimens pp. 2622-2633

- Mochuan Liu, Yuanjia Wang, Haoda Fu and Donglin Zeng
- Latent Space Modeling of Hypergraph Data pp. 2634-2646

- Kathryn Turnbull, Simón Lunagómez, Christopher Nemeth and Edoardo Airoldi
- Minimax Quasi-Bayesian Estimation in Sparse Canonical Correlation Analysis via a Rayleigh Quotient Function pp. 2647-2657

- Qiuyun Zhu and Yves Atchadé
- A Projection Space-Filling Criterion and Related Optimality Results pp. 2658-2669

- Chenlu Shi and Hongquan Xu
- New Estimands for Experiments with Strong Interference pp. 2670-2679

- David Choi
- Factor Augmented Sparse Throughput Deep ReLU Neural Networks for High Dimensional Regression pp. 2680-2694

- Jianqing Fan and Yihong Gu
- Uniform Inference for Kernel Density Estimators with Dyadic Data pp. 2695-2708

- Matias Cattaneo, Yingjie Feng and William G. Underwood
- A General Framework for Circular Local Likelihood Regression pp. 2709-2721

- María Alonso-Pena, Irène Gijbels and Rosa M. Crujeiras
- Enveloped Huber Regression pp. 2722-2732

- Le Zhou, R. Dennis Cook and Hui Zou
- Dimension Reduction for Fréchet Regression pp. 2733-2747

- Qi Zhang, Lingzhou Xue and Bing Li
- Optimal and Safe Estimation for High-Dimensional Semi-Supervised Learning pp. 2748-2759

- Siyi Deng, Yang Ning, Jiwei Zhao and Heping Zhang
- Higher-Order Expansions and Inference for Panel Data Models pp. 2760-2771

- Jiti Gao, Bin Peng and Yayi Yan
- Nonparametric Statistical Inference via Metric Distribution Function in Metric Spaces pp. 2772-2784

- Xueqin Wang, Jin Zhu, Wenliang Pan, Junhao Zhu and Heping Zhang
- In Nonparametric and High-Dimensional Models, Bayesian Ignorability is an Informative Prior pp. 2785-2798

- Antonio R. Linero
- Testing General Linear Hypotheses Under a High-Dimensional Multivariate Regression Model with Spiked Noise Covariance pp. 2799-2810

- Haoran Li, Alexander Aue, Debashis Paul and Jie Peng
- Doubly Robust Interval Estimation for Optimal Policy Evaluation in Online Learning pp. 2811-2821

- Ye Shen, Hengrui Cai and Rui Song
- Split Knockoffs for Multiple Comparisons: Controlling the Directional False Discovery Rate pp. 2822-2832

- Yang Cao, Xinwei Sun and Yuan Yao
- Bayesian Spline-Based Hidden Markov Models with Applications to Actimetry Data and Sleep Analysis pp. 2833-2843

- Sida Chen and Bärbel Finkenstädt
- Optimal Subsampling via Predictive Inference pp. 2844-2856

- Xiaoyang Wu, Yuyang Huo, Haojie Ren and Changliang Zou
- A Decorrelating and Debiasing Approach to Simultaneous Inference for High-Dimensional Confounded Models pp. 2857-2868

- Yinrui Sun, Li Ma and Yin Xia
- Causal Inference with Noncompliance and Unknown Interference pp. 2869-2880

- Tadao Hoshino and Takahide Yanagi
- Minimum Resource Threshold Policy Under Partial Interference pp. 2881-2894

- Chan Park, Guanhua Chen, Menggang Yu and Hyunseung Kang
- Online Regularization toward Always-Valid High-Dimensional Dynamic Pricing pp. 2895-2907

- Chi-Hua Wang, Zhanyu Wang, Will Wei Sun and Guang Cheng
- Bootstrap Inference in the Presence of Bias pp. 2908-2918

- Giuseppe Cavaliere, Sílvia Gonçalves, Morten Nielsen and Edoardo Zanelli
- Semi-Distance Correlation and Its Applications pp. 2919-2933

- Wei Zhong, Zhuoxi Li, Wenwen Guo and Hengjian Cui
- Balancing Covariates in Randomized Experiments with the Gram–Schmidt Walk Design pp. 2934-2946

- Christopher Harshaw, Fredrik Sävje, Daniel A. Spielman and Peng Zhang
- Bounding Wasserstein Distance with Couplings pp. 2947-2958

- Niloy Biswas and Lester Mackey
- Model-Robust and Efficient Covariate Adjustment for Cluster-Randomized Experiments pp. 2959-2971

- Bingkai Wang, Chan Park, Dylan S. Small and Fan Li
- Online Statistical Inference for Stochastic Optimization via Kiefer-Wolfowitz Methods pp. 2972-2982

- Xi Chen, Zehua Lai, He Li and Yichen Zhang
- Fitting Latent Non-Gaussian Models Using Variational Bayes and Laplace Approximations pp. 2983-2995

- Rafael Cabral, David Bolin and Håvard Rue
- Dynamic Matrix Recovery pp. 2996-3007

- Ziyuan Chen, Ying Yang and Fang Yao
- Clustering High-Dimensional Noisy Categorical Data pp. 3008-3019

- Zhiyi Tian, Jiaming Xu and Jen Tang
- A Kernel Measure of Dissimilarity between M Distributions pp. 3020-3032

- Zhen Huang and Bodhisattva Sen
- Robust Validation: Confident Predictions Even When Distributions Shift pp. 3033-3044

- Maxime Cauchois, Suyash Gupta, Alnur Ali and John C. Duchi
- Policy Learning with Asymmetric Counterfactual Utilities pp. 3045-3058

- Eli Ben-Michael, Kosuke Imai and Zhichao Jiang
- Extremal Random Forests pp. 3059-3072

- Nicola Gnecco, Edossa Merga Terefe and Sebastian Engelke
- Graphical Principal Component Analysis of Multivariate Functional Time Series pp. 3073-3085

- Jianbin Tan, Decai Liang, Yongtao Guan and Hui Huang
- A Composite Likelihood-Based Approach for Change-Point Detection in Spatio-Temporal Processes pp. 3086-3100

- Zifeng Zhao, Ting Fung Ma, Wai Leong Ng and Chun Yip Yau
- Identifiability and Consistent Estimation for Gaussian Chain Graph Models pp. 3101-3112

- Ruixuan Zhao, Haoran Zhang and Junhui Wang
- Reinforcement Learning in Latent Heterogeneous Environments pp. 3113-3126

- Elynn Y. Chen, Rui Song and Michael I. Jordan
- Semiparametric Bayesian Inference for Local Extrema of Functions in the Presence of Noise pp. 3127-3140

- Meng Li, Zejian Liu, Cheng-Han Yu and Marina Vannucci
- Consistent Community Detection in Inter-Layer Dependent Multi-Layer Networks pp. 3141-3151

- Jingnan Zhang, Junhui Wang and Xueqin Wang
- Federated Offline Reinforcement Learning pp. 3152-3163

- Doudou Zhou, Yufeng Zhang, Aaron Sonabend-W, Zhaoran Wang, Junwei Lu and Tianxi Cai
- Bayesian Structure Learning in Undirected Gaussian Graphical Models: Literature Review with Empirical Comparison pp. 3164-3182

- Lucas Vogels, Reza Mohammadi, Marit Schoonhoven and Ş. İlker Birbil
- Structural Equation Modeling Using R/SAS: A Step-by-Step Approach with Real Data Analysis pp. 3183-3184

- Lifeng Lin
- Models for Multi-State Survival Data: Rates, Risks, and Pseudo-Values pp. 3184-3186

- Ross L. Prentice
- Spatial Statistics for Data Science: Theory and Practice with R pp. 3186-3187

- Chae Young Lim
- Correction pp. 3188-3188

- The Editors
- Corrections to “Spatio-Temporal Cross-Covariance Functions under the Lagrangian Framework with Multiple Advections” pp. 3189-3189

- The Editors
Volume 119, issue 547, 2024
- Weighted Functional Data Analysis for the Calibration of a Ground Motion Model in Italy pp. 1697-1708

- Teresa Bortolotti, Riccardo Peli, Giovanni Lanzano, Sara Sgobba and Alessandra Menafoglio
- Bayesian Integrative Region Segmentation in Spatially Resolved Transcriptomic Studies pp. 1709-1721

- Yinqiao Yan and Xiangyu Luo
- Assessing COVID-19 Prevalence in Austria with Infection Surveys and Case Count Data as Auxiliary Information pp. 1722-1735

- Stéphane Guerrier, Christoph Kuzmics and Maria-Pia Victoria-Feser
- Evaluating Dynamic Conditional Quantile Treatment Effects with Applications in Ridesharing pp. 1736-1750

- Ting Li, Chengchun Shi, Zhaohua Lu, Yi Li and Hongtu Zhu
- Coexchangeable Process Modeling for Uncertainty Quantification in Joint Climate Reconstruction pp. 1751-1764

- Lachlan Astfalck, Daniel Williamson, Niall Gandy, Lauren Gregoire and Ruza Ivanovic
- Tree-Guided Rare Feature Selection and Logic Aggregation with Electronic Health Records Data pp. 1765-1777

- Jianmin Chen, Robert H. Aseltine, Fei Wang and Kun Chen
- An Automated Approach to Causal Inference in Discrete Settings pp. 1778-1793

- Guilherme Duarte, Noam Finkelstein, Dean Knox, Jonathan Mummolo and Ilya Shpitser
- Asymptotic Distribution-Free Independence Test for High-Dimension Data pp. 1794-1804

- Zhanrui Cai, Jing Lei and Kathryn Roeder
- Classified Mixed Model Projections pp. 1805-1819

- J. Sunil Rao, Mengying Li and Jiming Jiang
- Gaussian Approximation and Spatially Dependent Wild Bootstrap for High-Dimensional Spatial Data pp. 1820-1832

- Daisuke Kurisu, Kengo Kato and Xiaofeng Shao
- Testing Directed Acyclic Graph via Structural, Supervised and Generative Adversarial Learning pp. 1833-1846

- Chengchun Shi, Yunzhe Zhou and Lexin Li
- Bayesian Inference Using the Proximal Mapping: Uncertainty Quantification Under Varying Dimensionality pp. 1847-1858

- Maoran Xu, Hua Zhou, Yujie Hu and Leo L. Duan
- Double Negative Control Inference in Test-Negative Design Studies of Vaccine Effectiveness pp. 1859-1870

- Kendrick Qijun Li, Xu Shi, Wang Miao and Eric Tchetgen Tchetgen
- Bahadur Efficiency of Observational Block Designs pp. 1871-1881

- Paul R. Rosenbaum
- Exact Bayesian Inference for Diffusion-Driven Cox Processes pp. 1882-1894

- Flávio B. Gonçalves, Krzysztof G. Łatuszyński and Gareth O. Roberts
- On the Estimation of the Number of Communities for Sparse Networks pp. 1895-1910

- Neil Hwang, Jiarui Xu, Shirshendu Chatterjee and Sharmodeep Bhattacharyya
- Multivariate Sparse Clustering for Extremes pp. 1911-1922

- Nicolas Meyer and Olivier Wintenberger
- Spectral Embedding of Weighted Graphs pp. 1923-1932

- Ian Gallagher, Andrew Jones, Anna Bertiger, Carey E. Priebe and Patrick Rubin-Delanchy
- DDAC-SpAM: A Distributed Algorithm for Fitting High-dimensional Sparse Additive Models with Feature Division and Decorrelation pp. 1933-1944

- Yifan He, Ruiyang Wu, Yong Zhou and Yang Feng
- Frequency Detection and Change Point Estimation for Time Series of Complex Oscillation pp. 1945-1956

- Hau-Tieng Wu and Zhou Zhou
- Factor Augmented Inverse Regression and its Application to Microbiome Data Analysis pp. 1957-1967

- Daolin Pang, Hongyu Zhao and Tao Wang
- Statistical Inference for Maximin Effects: Identifying Stable Associations across Multiple Studies pp. 1968-1984

- Zijian Guo
- Covariate-Assisted Bayesian Graph Learning for Heterogeneous Data pp. 1985-1999

- Yabo Niu, Yang Ni, Debdeep Pati and Bani K. Mallick
- Optimal Dynamic Treatment Regimes and Partial Welfare Ordering pp. 2000-2010

- Sukjin Han
- Value Enhancement of Reinforcement Learning via Efficient and Robust Trust Region Optimization pp. 2011-2025

- Chengchun Shi, Zhengling Qi, Jianing Wang and Fan Zhou
- Sensitivity to Unobserved Confounding in Studies with Factor-Structured Outcomes pp. 2026-2037

- Jiajing Zheng, Jiaxi Wu, Alexander D’Amour and Alexander Franks
- High-Dimensional Time Series Segmentation via Factor-Adjusted Vector Autoregressive Modeling pp. 2038-2050

- Haeran Cho, Hyeyoung Maeng, Idris A. Eckley and Paul Fearnhead
- De-confounding Causal Inference Using Latent Multiple-Mediator Pathways pp. 2051-2065

- Yubai Yuan and Annie Qu
- Inference in High-Dimensional Multivariate Response Regression with Hidden Variables pp. 2066-2077

- Xin Bing, Wei Cheng, Huijie Feng and Yang Ning
- Ideal Bayesian Spatial Adaptation pp. 2078-2091

- Veronika Ročková and Judith Rousseau
- PCABM: Pairwise Covariates-Adjusted Block Model for Community Detection pp. 2092-2104

- Sihan Huang, Jiajin Sun and Yang Feng
- A Nonstationary Soft Partitioned Gaussian Process Model via Random Spanning Trees pp. 2105-2116

- Zhao Tang Luo, Huiyan Sang and Bani Mallick
- Empirical Likelihood for Network Data pp. 2117-2128

- Yukitoshi Matsushita and Taisuke Otsu
- A Comprehensive Bayesian Framework for Envelope Models pp. 2129-2139

- Saptarshi Chakraborty and Zhihua Su
- Spectral Clustering, Bayesian Spanning Forest, and Forest Process pp. 2140-2153

- Leo L. Duan and Arkaprava Roy
- Unified Unconditional Regression for Multivariate Quantiles, M-Quantiles, and Expectiles pp. 2154-2165

- Luca Merlo, Lea Petrella, Nicola Salvati and Nikos Tzavidis
- Semiparametrically Efficient Method for Enveloped Central Space pp. 2166-2177

- Linquan Ma, Jixin Wang, Han Chen and Lan Liu
- Unveiling the Unobservable: Causal Inference on Multiple Derived Outcomes pp. 2178-2189

- Yumou Qiu, Jiarui Sun and Xiao-Hua Zhou
- Network Estimation by Mixing: Adaptivity and More pp. 2190-2205

- Tianxi Li and Can M. Le
- Estimation and Inference of Extremal Quantile Treatment Effects for Heavy-Tailed Distributions pp. 2206-2216

- David Deuber, Jinzhou Li, Sebastian Engelke and Marloes H. Maathuis
- Latent Multimodal Functional Graphical Model Estimation pp. 2217-2229

- Katherine Tsai, Boxin Zhao, Sanmi Koyejo and Mladen Kolar
- A Unified Nonparametric Fiducial Approach to Interval-Censored Data pp. 2230-2241

- Yifan Cui, Jan Hannig and Michael R. Kosorok
- Exact Decoding of a Sequentially Markov Coalescent Model in Genetics pp. 2242-2255

- Caleb Ki and Jonathan Terhorst
- A Negative Correlation Strategy for Bracketing in Difference-in-Differences pp. 2256-2268

- Ting Ye, Luke Keele, Raiden Hasegawa and Dylan S. Small
- Nonparametric Finite Mixture: Applications in Overcoming Misclassification Bias pp. 2269-2281

- Zi Ye and Solomon W. Harrar
- Graphical Model Inference with Erosely Measured Data pp. 2282-2293

- Lili Zheng and Genevera I. Allen
- Fast Approximation of the Shapley Values Based on Order-of-Addition Experimental Designs pp. 2294-2304

- Liuqing Yang, Yongdao Zhou, Haoda Fu, Min-Qian Liu and Wei Zheng
- HAC Covariance Matrix Estimation in Quantile Regression pp. 2305-2316

- Antonio Galvao and Jungmo Yoon
- A Randomized Pairwise Likelihood Method for Complex Statistical Inferences pp. 2317-2327

- Gildas Mazo, Dimitris Karlis and Andrea Rau
- Group Network Hawkes Process pp. 2328-2344

- Guanhua Fang, Ganggang Xu, Haochen Xu, Xuening Zhu and Yongtao Guan
- Generalized Bayesian Inference for Discrete Intractable Likelihood pp. 2345-2355

- Takuo Matsubara, Jeremias Knoblauch, François-Xavier Briol and Chris. J. Oates
- Random Fixed Boundary Flows pp. 2356-2368

- Zhigang Yao, Yuqing Xia and Zengyan Fan
- Robust Leave-One-Out Cross-Validation for High-Dimensional Bayesian Models pp. 2369-2381

- Luca Alessandro Silva and Giacomo Zanella
- Spatiotemporal Clustering with Neyman-Scott Processes via Connections to Bayesian Nonparametric Mixture Models pp. 2382-2395

- Yixin Wang, Anthony Degleris, Alex Williams and Scott W. Linderman
- A Wasserstein Index of Dependence for Random Measures pp. 2396-2406

- Marta Catalano, Hugo Lavenant, Antonio Lijoi and Igor Prünster
- Smoothness-Penalized Deconvolution (SPeD) of a Density Estimate pp. 2407-2417

- David Kent and David Ruppert
- Introduction to Environmental Data Science pp. 2418-2419

- Timothée Poisot
- Controlled Epidemiological Studies pp. 2419-2420

- Kaushik Ghosh
- Statistical Methods in Health Disparity Research pp. 2421-2421

- Susan M. Paddock
- Sparse Graphical Modeling for High Dimensional Data: A Paradigm of Conditional Independence Tests pp. 2421-2422

- Reza Mohammadi
- Corrigendum to Maximum Likelihood Estimation of the Multivariate Normal Mixture Model pp. 2423-2423

- The Editors
Volume 119, issue 546, 2024
- Partnering With Authors to Enhance Reproducibility at JASA pp. 795-797

- Julia Wrobel, Emily C. Hector, Lorin Crawford, Lucy D’Agostino McGowan, Natalia da Silva, Jeff Goldsmith, Stephanie Hicks, Michael Kane, Youjin Lee, Vinicius Mayrink, Christopher J. Paciorek, Therri Usher and Julian Wolfson
- Bayesian Landmark-Based Shape Analysis of Tumor Pathology Images pp. 798-810

- Cong Zhang, Tejasv Bedi, Chul Moon, Yang Xie, Min Chen and Qiwei Li
- Estimating Cell-Type-Specific Gene Co-Expression Networks from Bulk Gene Expression Data with an Application to Alzheimer’s Disease pp. 811-824

- Chang Su, Jingfei Zhang and Hongyu Zhao
- Leveraging Weather Dynamics in Insurance Claims Triage Using Deep Learning pp. 825-838

- Peng Shi, Wei Zhang and Kun Shi
- Estimating Trans-Ancestry Genetic Correlation with Unbalanced Data Resources pp. 839-850

- Bingxin Zhao, Xiaochen Yang and Hongtu Zhu
- Heterogeneity Analysis on Multi-State Brain Functional Connectivity and Adolescent Neurocognition pp. 851-863

- Shiying Wang, Todd Constable, Heping Zhang and Yize Zhao
- Addressing Multiple Detection Limits with Semiparametric Cumulative Probability Models pp. 864-874

- Yuqi Tian, Chun Li, Shengxin Tu, Nathan T. James, FrankE. Harrell and BryanE. Shepherd
- Optimal Design of Experiments on Riemannian Manifolds pp. 875-886

- Hang Li and Enrique Del Castillo
- Two-Way Truncated Linear Regression Models with Extremely Thresholding Penalization pp. 887-903

- Hao Yang Teng and Zhengjun Zhang
- Valid Model-Free Spatial Prediction pp. 904-914

- Huiying Mao, Ryan Martin and Brian J. Reich
- Proximal Learning for Individualized Treatment Regimes Under Unmeasured Confounding pp. 915-928

- Zhengling Qi, Rui Miao and Xiaoke Zhang
- Finite-dimensional Discrete Random Structures and Bayesian Clustering pp. 929-941

- Antonio Lijoi, Igor Prünster and Tommaso Rigon
- Partially Linear Additive Regression with a General Hilbertian Response pp. 942-956

- Sungho Cho, Jeong Min Jeon, Dongwoo Kim, Kyusang Yu and Byeong U. Park
- Simultaneous Decorrelation of Matrix Time Series pp. 957-969

- Yuefeng Han, Rong Chen, Cun-Hui Zhang and Qiwei Yao
- Adaptive Algorithm for Multi-Armed Bandit Problem with High-Dimensional Covariates pp. 970-982

- Wei Qian, Ching-Kang Ing and Ji Liu
- Confidently Comparing Estimates with the c-value pp. 983-994

- Brian L. Trippe, Sameer K. Deshpande and Tamara Broderick
- Guaranteed Functional Tensor Singular Value Decomposition pp. 995-1007

- Rungang Han, Pixu Shi and Anru R. Zhang
- A Random Projection Approach to Hypothesis Tests in High-Dimensional Single-Index Models pp. 1008-1018

- Changyu Liu, Xingqiu Zhao and Jian Huang
- Higher-Order Least Squares: Assessing Partial Goodness of Fit of Linear Causal Models pp. 1019-1031

- Christoph Schultheiss, Peter Bühlmann and Ming Yuan
- On Semiparametrically Dynamic Functional-Coefficient Autoregressive Spatio-Temporal Models with Irregular Location Wide Nonstationarity pp. 1032-1043

- Zudi Lu, Xiaohang Ren and Rongmao Zhang
- Copula Based Cox Proportional Hazards Models for Dependent Censoring pp. 1044-1054

- Negera Wakgari Deresa and Ingrid Van Keilegom
- Optimal Linear Discriminant Analysis for High-Dimensional Functional Data pp. 1055-1064

- Kaijie Xue, Jin Yang and Fang Yao
- A General M-estimation Theory in Semi-Supervised Framework pp. 1065-1075

- Shanshan Song, Yuanyuan Lin and Yong Zhou
- Are Latent Factor Regression and Sparse Regression Adequate? pp. 1076-1088

- Jianqing Fan, Zhipeng Lou and Mengxin Yu
- Variational Bayes for Fast and Accurate Empirical Likelihood Inference pp. 1089-1101

- Weichang Yu and Howard D. Bondell
- Kernel Estimation of Bivariate Time-Varying Coefficient Model for Longitudinal Data with Terminal Event pp. 1102-1111

- Yue Wang, Bin Nan and John D. Kalbfleisch
- Bayesian Robustness: A Nonasymptotic Viewpoint pp. 1112-1123

- Kush Bhatia, Yi-An Ma, Anca D. Dragan, Peter L. Bartlett and Michael I. Jordan
- Skeleton Clustering: Dimension-Free Density-Aided Clustering pp. 1124-1135

- Zeyu Wei and Yen-Chi Chen
- A Two-Sample Conditional Distribution Test Using Conformal Prediction and Weighted Rank Sum pp. 1136-1154

- Xiaoyu Hu and Jing Lei
- Bayesian Modeling with Spatial Curvature Processes pp. 1155-1167

- Aritra Halder, Sudipto Banerjee and Dipak K. Dey
- Solving Estimating Equations With Copulas pp. 1168-1180

- Thomas Nagler and Thibault Vatter
- Intraday Periodic Volatility Curves pp. 1181-1191

- Torben Andersen, Tao Su, Viktor Todorov and Zhiyuan Zhang
- Crowdsourcing Utilizing Subgroup Structure of Latent Factor Modeling pp. 1192-1204

- Qi Xu, Yubai Yuan, Junhui Wang and Annie Qu
- Nonlinear Causal Discovery with Confounders pp. 1205-1214

- Chunlin Li, Xiaotong Shen and Wei Pan
- Online Smooth Backfitting for Generalized Additive Models pp. 1215-1228

- Ying Yang, Fang Yao and Peng Zhao
- Hypotheses Testing from Complex Survey Data Using Bootstrap Weights: A Unified Approach pp. 1229-1239

- Jae Kwang Kim, J. N. K. Rao and Zhonglei Wang
- Instrumental Variable Estimation of Marginal Structural Mean Models for Time-Varying Treatment pp. 1240-1251

- Haben Michael, Yifan Cui, Scott A. Lorch and Eric J. Tchetgen Tchetgen
- Factor Modeling for Clustering High-Dimensional Time Series pp. 1252-1263

- Bo Zhang, Guangming Pan, Qiwei Yao and Wang Zhou
- Network Inference Using the Hub Model and Variants pp. 1264-1273

- Zhibing He, Yunpeng Zhao, Peter Bickel, Charles Weko, Dan Cheng and Jirui Wang
- Estimation and Inference for High-Dimensional Generalized Linear Models with Knowledge Transfer pp. 1274-1285

- Sai Li, Linjun Zhang, T. Tony Cai and Hongzhe Li
- On Learning and Testing of Counterfactual Fairness through Data Preprocessing pp. 1286-1296

- Haoyu Chen, Wenbin Lu, Rui Song and Pulak Ghosh
- Distributed Inference for Spatial Extremes Modeling in High Dimensions pp. 1297-1308

- Emily C. Hector and Brian J. Reich
- Doubly Robust Capture-Recapture Methods for Estimating Population Size pp. 1309-1321

- Manjari Das, Edward H. Kennedy and Nicholas P. Jewell
- Variable Selection for High-Dimensional Nodal Attributes in Social Networks with Degree Heterogeneity pp. 1322-1335

- Jia Wang, Xizhen Cai, Xiaoyue Niu and Runze Li
- Fixed-Domain Posterior Contraction Rates for Spatial Gaussian Process Model with Nugget pp. 1336-1347

- Cheng Li, Saifei Sun and Yichen Zhu
- Semiparametric Proximal Causal Inference pp. 1348-1359

- Yifan Cui, Hongming Pu, Xu Shi, Wang Miao and Eric Tchetgen Tchetgen
- Bayesian Conditional Transformation Models pp. 1360-1373

- Manuel Carlan, Thomas Kneib and Nadja Klein
- Cohesion and Repulsion in Bayesian Distance Clustering pp. 1374-1384

- Abhinav Natarajan, Maria De Iorio, Andreas Heinecke, Emanuel Mayer and Simon Glenn
- Feature Screening with Conditional Rank Utility for Big-Data Classification pp. 1385-1395

- Xingxiang Li and Chen Xu
- Test of Significance for High-Dimensional Thresholds with Application to Individualized Minimal Clinically Important Difference pp. 1396-1408

- Huijie Feng, Jingyi Duan, Yang Ning and Jiwei Zhao
- Scalable Bayesian Transport Maps for High-Dimensional Non-Gaussian Spatial Fields pp. 1409-1423

- Matthias Katzfuss and Florian Schäfer
- Tail Spectral Density Estimation and Its Uncertainty Quantification: Another Look at Tail Dependent Time Series Analysis pp. 1424-1433

- Ting Zhang and Beibei Xu
- Cross-Validation: What Does It Estimate and How Well Does It Do It? pp. 1434-1445

- Stephen Bates, Trevor Hastie and Robert Tibshirani
- Efficient Multimodal Sampling via Tempered Distribution Flow pp. 1446-1460

- Yixuan Qiu and Xiao Wang
- Inference in High-Dimensional Online Changepoint Detection pp. 1461-1472

- Yudong Chen, Tengyao Wang and Richard J. Samworth
- Adaptive Functional Thresholding for Sparse Covariance Function Estimation in High Dimensions pp. 1473-1485

- Qin Fang, Shaojun Guo and Xinghao Qiao
- Statistical Inferences for Complex Dependence of Multimodal Imaging Data pp. 1486-1499

- Jinyuan Chang, Jing He, Jian Kang and Mingcong Wu
- Sparse Convoluted Rank Regression in High Dimensions pp. 1500-1512

- Le Zhou, Boxiang Wang and Hui Zou
- Testing Simultaneous Diagonalizability pp. 1513-1525

- Yuchen Xu, Marie-Christine Düker and David S. Matteson
- A Unified Inference for Predictive Quantile Regression pp. 1526-1540

- Xiaohui Liu, Wei Long, Liang Peng and Bingduo Yang
- Inference for Treatment-Specific Survival Curves Using Machine Learning pp. 1541-1553

- Ted Westling, Alex Luedtke, Peter B. Gilbert and Marco Carone
- Anytime-Valid Tests of Conditional Independence Under Model-X pp. 1554-1565

- Peter Grünwald, Alexander Henzi and Tyron Lardy
- Ridge Regression Under Dense Factor Augmented Models pp. 1566-1578

- Yi He
- Estimation of Linear Functionals in High-Dimensional Linear Models: From Sparsity to Nonsparsity pp. 1579-1591

- Junlong Zhao, Yang Zhou and Yufeng Liu
- Censored Interquantile Regression Model with Time-Dependent Covariates pp. 1592-1603

- Chi Wing Chu and Tony Sit
- Large-Scale Two-Sample Comparison of Support Sets pp. 1604-1618

- Haoyu Geng, Xiaolong Cui, Haojie Ren and Changliang Zou
- A Hierarchical Expected Improvement Method for Bayesian Optimization pp. 1619-1632

- Zhehui Chen, Simon Mak and C. F. Jeff Wu
- Narrowest Significance Pursuit: Inference for Multiple Change-Points in Linear Models pp. 1633-1646

- Piotr Fryzlewicz
- Survival Mixed Membership Blockmodel pp. 1647-1656

- Fangda Song, Jing Chu, Shuangge Ma and Yingying Wei
- Independence Weights for Causal Inference with Continuous Treatments pp. 1657-1670

- Jared D. Huling, Noah Greifer and Guanhua Chen
- Markov Bases: A 25 Year Update pp. 1671-1686

- Félix Almendra-Hernández, Jesús A. De Loera and Sonja Petrović
- Mathematical Foundations of Infinite-Dimensional Statistical Models pp. 1687-1689

- Bodhisattva Sen
- Theory of Statistical Inference pp. 1689-1690

- Somabha Mukherjee
- Quantitative Methods for Precision Medicine: Pharmacogenomics in Action pp. 1690-1691

- Arthur Berg
- Statistical Modeling with R: A Dual Frequentist and Bayesian Approach for Life Scientists pp. 1691-1692

- Christian P. Robert
- Data Science and Predictive Analytics, 2nd ed pp. 1692-1693

- Xing Qiu
- Correction pp. 1694-1695

- Pavel N. Krivitsky, Pietro Coletti and Niel Hens
Volume 119, issue 545, 2024
- Overcoming Repeated Testing Schedule Bias in Estimates of Disease Prevalence pp. 1-13

- Patrick M. Schnell, Matthew Wascher and Grzegorz A. Rempala
- Heterogeneous Distributed Lag Models to Estimate Personalized Effects of Maternal Exposures to Air Pollution pp. 14-26

- Daniel Mork, Marianthi-Anna Kioumourtzoglou, Marc Weisskopf, Brent A. Coull and Ander Wilson
- A Semiparametric Inverse Reinforcement Learning Approach to Characterize Decision Making for Mental Disorders pp. 27-38

- Xingche Guo, Donglin Zeng and Yuanjia Wang
- Hierarchical Neyman-Pearson Classification for Prioritizing Severe Disease Categories in COVID-19 Patient Data pp. 39-51

- Lijia Wang, Y. X. Rachel Wang, Jingyi Jessica Li and Xin Tong
- A Feasibility Study of Differentially Private Summary Statistics and Regression Analyses with Evaluations on Administrative and Survey Data pp. 52-65

- Andrés F. Barrientos, Aaron R. Williams, Joshua Snoke and Claire McKay Bowen
- Bayesian Lesion Estimation with a Structured Spike-and-Slab Prior pp. 66-80

- Anna Menacher, Thomas E. Nichols, Chris Holmes and Habib Ganjgahi
- Operator-Induced Structural Variable Selection for Identifying Materials Genes pp. 81-94

- Shengbin Ye, Thomas P. Senftle and Meng Li
- Latent Network Structure Learning From High-Dimensional Multivariate Point Processes pp. 95-108

- Biao Cai, Jingfei Zhang and Yongtao Guan
- Bayesian Markov-Switching Tensor Regression for Time-Varying Networks pp. 109-121

- Monica Billio, Roberto Casarin and Matteo Iacopini
- Conformal Sensitivity Analysis for Individual Treatment Effects pp. 122-135

- Mingzhang Yin, Claudia Shi, Yixin Wang and David M. Blei
- Randomization-based Joint Central Limit Theorem and Efficient Covariate Adjustment in Randomized Block 2K Factorial Experiments pp. 136-150

- Hanzhong Liu, Jiyang Ren and Yuehan Yang
- A New and Unified Family of Covariate Adaptive Randomization Procedures and Their Properties pp. 151-162

- Wei Ma, Ping Li, Li-Xin Zhang and Feifang Hu
- Heavy-Tailed Density Estimation pp. 163-175

- Surya T. Tokdar, Sheng Jiang and Erika L. Cunningham
- Nonparametric Estimation of Repeated Densities with Heterogeneous Sample Sizes pp. 176-188

- Jiaming Qiu, Xiongtao Dai and Zhengyuan Zhu
- Hidden Markov Pólya Trees for High-Dimensional Distributions pp. 189-201

- Naoki Awaya and Li Ma
- Low-Rank Regression Models for Multiple Binary Responses and their Applications to Cancer Cell-Line Encyclopedia Data pp. 202-216

- Seyoung Park, Eun Ryung Lee and Hongyu Zhao
- Bias-Correction and Test for Mark-Point Dependence with Replicated Marked Point Processes pp. 217-231

- Ganggang Xu, Jingfei Zhang, Yehua Li and Yongtao Guan
- Statistically Efficient Advantage Learning for Offline Reinforcement Learning in Infinite Horizons pp. 232-245

- Chengchun Shi, Shikai Luo, Yuan Le, Hongtu Zhu and Rui Song
- Nearly Dimension-Independent Sparse Linear Bandit over Small Action Spaces via Best Subset Selection pp. 246-258

- Yi Chen, Yining Wang, Ethan X. Fang, Zhaoran Wang and Runze Li
- An Empirical Bayes Approach to Shrinkage Estimation on the Manifold of Symmetric Positive-Definite Matrices pp. 259-272

- Chun-Hao Yang, Hani Doss and Baba C. Vemuri
- Off-Policy Confidence Interval Estimation with Confounded Markov Decision Process pp. 273-284

- Chengchun Shi, Jin Zhu, Shen Ye, Shikai Luo, Hongtu Zhu and Rui Song
- Optimal One-Pass Nonparametric Estimation Under Memory Constraint pp. 285-296

- Mingxue Quan and Zhenhua Lin
- Optimal Nonparametric Inference with Two-Scale Distributional Nearest Neighbors pp. 297-307

- Emre Demirkaya, Yingying Fan, Lan Gao, Jinchi Lv, Patrick Vossler and Jingbo Wang
- Dynamic Principal Component Analysis in High Dimensions pp. 308-319

- Xiaoyu Hu and Fang Yao
- Scaled Process Priors for Bayesian Nonparametric Estimation of the Unseen Genetic Variation pp. 320-331

- Federico Camerlenghi, Stefano Favaro, Lorenzo Masoero and Tamara Broderick
- Selective Inference for Hierarchical Clustering pp. 332-342

- Lucy L. Gao, Jacob Bien and Daniela Witten
- Subspace Estimation with Automatic Dimension and Variable Selection in Sufficient Dimension Reduction pp. 343-355

- Jing Zeng, Qing Mai and Xin Zhang
- Fast and Numerically Stable Particle-Based Online Additive Smoothing: The AdaSmooth Algorithm pp. 356-367

- Alessandro Mastrototaro, Jimmy Olsson and Johan Alenlöv
- An Additive Graphical Model for Discrete Data pp. 368-381

- Jun Tao, Bing Li and Lingzhou Xue
- Bootstrapping Extreme Value Estimators pp. 382-393

- Laurens de Haan and Chen Zhou
- Fisher-Pitman Permutation Tests Based on Nonparametric Poisson Mixtures with Application to Single Cell Genomics pp. 394-406

- Zhen Miao, Weihao Kong, Ramya Korlakai Vinayak, Wei Sun and Fang Han
- Modeling and Active Learning for Experiments with Quantitative-Sequence Factors pp. 407-421

- Qian Xiao, Yaping Wang, Abhyuday Mandal and Xinwei Deng
- Bayesian Spatial Blind Source Separation via the Thresholded Gaussian Process pp. 422-433

- Ben Wu, Ying Guo and Jian Kang
- Using SVD for Topic Modeling pp. 434-449

- Zheng Tracy Ke and Minzhe Wang
- To Adjust or not to Adjust? Estimating the Average Treatment Effect in Randomized Experiments with Missing Covariates pp. 450-460

- Anqi Zhao and Peng Ding
- Anomaly Detection for a Large Number of Streams: A Permutation-Based Higher Criticism Approach pp. 461-474

- Ivo V. Stoepker, Rui M. Castro, Ery Arias-Castro and Edwin van den Heuvel
- Assumption-Lean Cox Regression pp. 475-484

- Stijn Vansteelandt, Oliver Dukes, Kelly Van Lancker and Torben Martinussen
- Learning Coefficient Heterogeneity over Networks: A Distributed Spanning-Tree-Based Fused-Lasso Regression pp. 485-497

- Xin Zhang, Jia Liu and Zhengyuan Zhu
- An Algebraic Estimator for Large Spectral Density Matrices pp. 498-510

- Matteo Barigozzi and Matteo Farnè
- Fisher’s Combined Probability Test for High-Dimensional Covariance Matrices pp. 511-524

- Xiufan Yu, Danning Li and Lingzhou Xue
- Large Scale Prediction with Decision Trees pp. 525-537

- Jason M. Klusowski and Peter M. Tian
- Distribution of Distances based Object Matching: Asymptotic Inference pp. 538-551

- Christoph Alexander Weitkamp, Katharina Proksch, Carla Tameling and Axel Munk
- Policy Optimization Using Semiparametric Models for Dynamic Pricing pp. 552-564

- Jianqing Fan, Yongyi Guo and Mengxin Yu
- Inference in Heavy-Tailed Nonstationary Multivariate Time Series pp. 565-581

- Matteo Barigozzi, Giuseppe Cavaliere and Lorenzo Trapani
- A Mass-Shifting Phenomenon of Truncated Multivariate Normal Priors pp. 582-596

- Shuang Zhou, Pallavi Ray, Debdeep Pati and Anirban Bhattacharya
- Causal Inference for Social Network Data pp. 597-611

- Elizabeth L. Ogburn, Oleg Sofrygin, Iván Díaz and Mark J. van der Laan
- Estimating the Spectral Density at Frequencies Near Zero pp. 612-624

- Tucker McElroy and Dimitris N. Politis
- Estimating Optimal Infinite Horizon Dynamic Treatment Regimes via pT-Learning pp. 625-638

- Wenzhuo Zhou, Ruoqing Zhu and Annie Qu
- Statistical Learning for Individualized Asset Allocation pp. 639-649

- Yi Ding, Yingying Li and Rui Song
- Multi-Task Learning with High-Dimensional Noisy Images pp. 650-663

- Xin Ma and Suprateek Kundu
- Modeling Point Referenced Spatial Count Data: A Poisson Process Approach pp. 664-677

- Diego Morales-Navarrete, Moreno Bevilacqua, Christian Caamaño-Carrillo and Luis M. Castro
- Robust Inference and Modeling of Mean and Dispersion for Generalized Linear Models pp. 678-689

- Jolien Ponnet, Pieter Segaert, Stefan Van Aelst and Tim Verdonck
- Stochastic Convergence Rates and Applications of Adaptive Quadrature in Bayesian Inference pp. 690-700

- Blair Bilodeau, Alex Stringer and Yanbo Tang
- Nonparametric Two-Sample Tests of High Dimensional Mean Vectors via Random Integration pp. 701-714

- Yunlu Jiang, Xueqin Wang, Canhong Wen, Yukang Jiang and Heping Zhang
- Robust High-Dimensional Regression with Coefficient Thresholding and Its Application to Imaging Data Analysis pp. 715-729

- Bingyuan Liu, Qi Zhang, Lingzhou Xue, Peter X.-K. Song and Jian Kang
- Fair Policy Targeting pp. 730-743

- Davide Viviano and Jelena Bradic
- Projection Test for Mean Vector in High Dimensions pp. 744-756

- Wanjun Liu, Xiufan Yu, Wei Zhong and Runze Li
- Matching on Generalized Propensity Scores with Continuous Exposures pp. 757-772

- Xiao Wu, Fabrizia Mealli, Marianthi-Anna Kioumourtzoglou, Francesca Dominici and Danielle Braun
- Recommender Systems: A Review pp. 773-785

- Patrick M. LeBlanc, David Banks, Linhui Fu, Mingyan Li, Zhengyu Tang and Qiuyi Wu
- Statistical Analytics for Health Data Science with SAS and R pp. 786-787

- Ali Rahnavard
- Martingale Methods in Statistics pp. 787-789

- Insuk Seo
- Stable Lévy Processes via Lamperti-Type Representations pp. 789-790

- Giacomo Bormetti
- Fundamentals of Causal Inference: With R pp. 790-791

- Ting Ye
- Handbook of Matching and Weighting Adjustments for Causal Inference pp. 791-791

- Raymond K. W. Wong
- The Journal of the American Statistical Association 2023 Associate Editors pp. 792-793

- The Editors
| |