Semiparametric Double Balancing Score Estimation for Incomplete Data With Ignorable Missingness
Zonghui Hu,
Dean A. Follmann and
Jing Qin
Journal of the American Statistical Association, 2012, vol. 107, issue 497, 247-257
Abstract:
When estimating the marginal mean response with missing observations, a critical issue is robustness to model misspecification. In this article, we propose a semiparametric estimation method with extended double robustness that attains the optimal efficiency under less stringent requirement for model specifications than the doubly robust estimators. In this semiparametric estimation, covariate information is collapsed into a two-dimensional score S , with one dimension for (i) the pattern of missingness and the other for (ii) the pattern of response, both estimated from some working parametric models. The mean response E ( Y ) is then estimated by the sample mean of E ( Y ∣ S ), which is estimated via nonparametric regression. The semiparametric estimator is consistent if either the “core” of (i) or the “core” of (ii) is captured by S , and attains the optimal efficiency if both are captured by S . As the “cores” can be obtained without correctly specifying the full parametric models for (i) or (ii), the proposed estimator can be more robust than other doubly robust estimators. As S contains the propensity score as one component, the proposed estimator avoids the use and the shortcomings of inverse propensity weighting. This semiparametric estimator is most appealing for high-dimensional covariates, where fully correct model specification is challenging and nonparametric estimation is not feasible due to the problem of dimensionality. Numerical performance is investigated by simulation studies.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2012.656009 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:107:y:2012:i:497:p:247-257
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2012.656009
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().