EconPapers    
Economics at your fingertips  
 

Optimal Designs for Rational Function Regression

Dávid Papp

Journal of the American Statistical Association, 2012, vol. 107, issue 497, 400-411

Abstract: We consider the problem of finding optimal nonsequential designs for a large class of regression models involving polynomials and rational functions with heteroscedastic noise also given by a polynomial or rational weight function. Since the design weights can be found easily by existing methods once the support is known, we concentrate on determining the support of the optimal design. The proposed method treats D-, E-, A-, and Φ p -optimal designs in a unified manner, and generates a polynomial whose zeros are the support points of the optimal approximate design, generalizing a number of previously known results of the same flavor. The method is based on a mathematical optimization model that can incorporate various criteria of optimality and can be solved efficiently by well-established numerical optimization methods. In contrast to optimization-based methods previously proposed for the solution of similar design problems, our method also has theoretical guarantee of its algorithmic efficiency; in concordance with the theory, the actual running times of all numerical examples considered in the paper are negligible. The numerical stability of the method is demonstrated in an example involving high-degree polynomials. As a corollary, an upper bound on the size of the support set of the minimally supported optimal designs is also found.

Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2012.656035 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:107:y:2012:i:497:p:400-411

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2012.656035

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:400-411