Bayesian Inference for Dynamic Treatment Regimes: Mobility, Equity, and Efficiency in Student Tracking
Tristan Zajonc
Journal of the American Statistical Association, 2012, vol. 107, issue 497, 80-92
Abstract:
Policies in health, education, and economics often unfold sequentially and adapt to changing conditions. Such time-varying treatments pose problems for standard program evaluation methods because intermediate outcomes are simultaneously pretreatment confounders and posttreatment outcomes. This article extends the Bayesian perspective on causal inference and optimal treatment to these types of dynamic treatment regimes. A unifying idea remains ignorable treatment assignment, which now sequentially includes selection on intermediate outcomes. I present methods to estimate the causal effect of arbitrary regimes, recover the optimal regime, and characterize the set of feasible outcomes under different regimes. I demonstrate these methods through an application to optimal student tracking in ninth and tenth grade mathematics. For the sample considered, student mobility under the status-quo regime is significantly below the optimal rate and existing policies reinforce between-student inequality. An easy to implement optimal dynamic tracking regime, which promotes more students to honors in tenth grade, increases average final achievement to 0.07 standard deviations above the status quo while lowering inequality; there is no binding equity-efficiency tradeoff. The proposed methods provide a flexible and principled approach to causal inference for time-varying treatments and optimal treatment choice under uncertainty. This article has online supplementary material.
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2011.643747 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:107:y:2012:i:497:p:80-92
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2011.643747
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().