EconPapers    
Economics at your fingertips  
 

Bayesian Estimation and Prediction for Inhomogeneous Spatiotemporal Log-Gaussian Cox Processes Using Low-Rank Models, With Application to Criminal Surveillance

Alexandre Rodrigues and Peter J. Diggle

Journal of the American Statistical Association, 2012, vol. 107, issue 497, 93-101

Abstract: In this article, we propose a method for conducting likelihood-based inference for a class of nonstationary spatiotemporal log-Gaussian Cox processes. The method uses convolution-based models to capture spatiotemporal correlation structure, is computationally feasible even for large datasets, and does not require knowledge of the underlying spatial intensity of the process. We describe an application to a surveillance system for detecting emergent spatiotemporal clusters of homicides in Belo Horizonte, Brazil, and discuss the advantages and drawbacks of our model-based approach by comparison with other spatiotemporal surveillance methods that have been proposed in the literature.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2011.644496 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:107:y:2012:i:497:p:93-101

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2011.644496

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:93-101