Topological Analysis of Variance and the Maxillary Complex
Giseon Heo,
Jennifer Gamble and
Peter T. Kim
Journal of the American Statistical Association, 2012, vol. 107, issue 498, 477-492
Abstract:
It is common to reduce the dimensionality of data before applying classical multivariate analysis techniques in statistics. Persistent homology, a recent development in computational topology, has been shown to be useful for analyzing high-dimensional (nonlinear) data. In this article, we connect computational topology with the traditional analysis of variance and demonstrate the value of combining these approaches on a three-dimensional orthodontic landmark dataset derived from the maxillary complex. Indeed, combining appropriate techniques of both persistent homology and analysis of variance results in a better understanding of the data’s nonlinear features over and above what could have been achieved by classical means. Supplementary material for this article is available online.
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2011.641430 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:107:y:2012:i:498:p:477-492
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2011.641430
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().