EconPapers    
Economics at your fingertips  
 

Evaluation of Viable Dynamic Treatment Regimes in a Sequentially Randomized Trial of Advanced Prostate Cancer

Lu Wang, Andrea Rotnitzky, Xihong Lin, Randall E. Millikan and Peter F. Thall

Journal of the American Statistical Association, 2012, vol. 107, issue 498, 493-508

Abstract: We present new statistical analyses of data arising from a clinical trial designed to compare two-stage dynamic treatment regimes (DTRs) for advanced prostate cancer. The trial protocol mandated that patients be initially randomized among four chemotherapies, and that those who responded poorly be re-randomized to one of the remaining candidate therapies. The primary aim was to compare the DTRs’ overall success rates, with success defined by the occurrence of successful responses in each of two consecutive courses of the patient’s therapy. Of the 150 study participants, 47 did not complete their therapy as per the algorithm. However, 35 of them did so for reasons that precluded further chemotherapy, that is, toxicity and/or progressive disease. Consequently, rather than comparing the overall success rates of the DTRs in the unrealistic event that these patients had remained on their assigned chemotherapies, we conducted an analysis that compared viable switch rules defined by the per-protocol rules but with the additional provision that patients who developed toxicity or progressive disease switch to a non-prespecified therapeutic or palliative strategy. This modification involved consideration of bivariate per-course outcomes encoding both efficacy and toxicity. We used numerical scores elicited from the trial’s principal investigator to quantify the clinical desirability of each bivariate per-course outcome, and defined one endpoint as their average over all courses of treatment. Two other simpler sets of scores as well as log survival time were also used as endpoints. Estimation of each DTR-specific mean score was conducted using inverse probability weighted methods that assumed that missingness in the 12 remaining dropouts was informative but explainable in that it only depended on past recorded data. We conducted additional worst- and best-case analyses to evaluate sensitivity of our findings to extreme departures from the explainable dropout assumption.

Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2011.641416 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:107:y:2012:i:498:p:493-508

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2011.641416

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:107:y:2012:i:498:p:493-508