EconPapers    
Economics at your fingertips  
 

The Hybrid Wild Bootstrap for Time Series

Jens-peter Kreiss and Efstathios Paparoditis

Journal of the American Statistical Association, 2012, vol. 107, issue 499, 1073-1084

Abstract: We introduce a new and simple bootstrap procedure for general linear processes, called the hybrid wild bootstrap. The hybrid wild bootstrap generates frequency domain replicates of the periodogram that imitate asymptotically correct the first- and second-order properties of the ordinary periodogram including its weak dependence structure at different frequencies. As a consequence, the hybrid wild bootstrapped periodogram succeeds in approximating consistently the distribution of statistics that can be expressed as functionals of the periodogram, including the important class of spectral means for which all so far existing frequency domain bootstrap methods generally fail. Moreover, by inverting the hybrid wild bootstrapped discrete Fourier transform, pseudo-observations in the time domain are obtained. The generated time domain pseudo-observations can be used to approximate correctly the random behavior of statistics, the distribution of which depends on the first-, second-, and, to some extent, on the fourth-order structure of the underlying linear process. Thus, the proposed hybrid wild bootstrap procedure applied to general time series overcomes several of the limitations of standard linear time domain bootstrap methods.

Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2012.695664 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:107:y:2012:i:499:p:1073-1084

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2012.695664

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:107:y:2012:i:499:p:1073-1084