EconPapers    
Economics at your fingertips  
 

Deconvolution When Classifying Noisy Data Involving Transformations

Raymond Carroll, Aurore Delaigle and Peter Hall

Journal of the American Statistical Association, 2012, vol. 107, issue 499, 1166-1177

Abstract: In the present study, we consider the problem of classifying spatial data distorted by a linear transformation or convolution and contaminated by additive random noise. In this setting, we show that classifier performance can be improved if we carefully invert the data before the classifier is applied. However, the inverse transformation is not constructed so as to recover the original signal, and in fact, we show that taking the latter approach is generally inadvisable. We introduce a fully data-driven procedure based on cross-validation, and use several classifiers to illustrate numerical properties of our approach. Theoretical arguments are given in support of our claims. Our procedure is applied to data generated by light detection and ranging (Lidar) technology, where we improve on earlier approaches to classifying aerosols. This article has supplementary materials online.

Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2012.699793 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:107:y:2012:i:499:p:1166-1177

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2012.699793

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:107:y:2012:i:499:p:1166-1177