Mode Identification of Volatility in Time-Varying Autoregression
Gabriel Chandler and
Wolfgang Polonik
Journal of the American Statistical Association, 2012, vol. 107, issue 499, 1217-1229
Abstract:
In many applications, time series exhibit nonstationary behavior that might reasonably be modeled as a time-varying autoregressive (AR) process. In the context of such a model, we discuss the problem of testing for modality of the variance function. We propose a test of modality that is local and, when used iteratively, can be used to identify the total number of modes in a given series. This problem is closely related to peak detection and identification, which has applications in many fields. We propose a test that, under appropriate assumptions, is asymptotically distribution free under the null hypothesis, even though nonparametric estimation of the AR parameter functions is involved. Simulation studies and applications to real datasets illustrate the behavior of the test.
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2012.703877 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:107:y:2012:i:499:p:1217-1229
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2012.703877
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().