A Nonparametric Regression Model With Tree-Structured Response
Yuan Wang,
J. S. Marron,
Burcu Aydin,
Alim Ladha,
Elizabeth Bullitt and
Haonan Wang
Journal of the American Statistical Association, 2012, vol. 107, issue 500, 1272-1285
Abstract:
Developments in science and technology over the last two decades has motivated the study of complex data objects. In this article, we consider the topological properties of a population of tree-structured objects. Our interest centers on modeling the relationship between a tree-structured response and other covariates. For tree-structured objects, this poses serious challenges since most regression methods rely on linear operations in Euclidean space. We generalize the notion of nonparametric regression to the case of a tree-structured response variable. In addition, we develop a fast algorithm and give its theoretical justification. We implement the proposed method to analyze a dataset of human brain artery trees. An important lesson is that smoothing in the full tree space can reveal much deeper scientific insights than the simple smoothing of summary statistics. This article has supplementary materials online.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2012.699348 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1272-1285
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2012.699348
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().