EconPapers    
Economics at your fingertips  
 

Measurement Error Case Series Models With Application to Infection-Cardiovascular Risk in Older Patients on Dialysis

Sandra M. Mohammed, Damla Şentürk, Lorien S. Dalrymple and Danh V. Nguyen

Journal of the American Statistical Association, 2012, vol. 107, issue 500, 1310-1323

Abstract: Infection and cardiovascular disease are leading causes of hospitalization and death in older patients on dialysis. Our recent work found an increase in the relative incidence of cardiovascular outcomes during the ∼ 30 days after infection-related hospitalizations using the case series model, which adjusts for measured and unmeasured baseline confounders. However, a major challenge in modeling/assessing the infection-cardiovascular risk hypothesis is that the exact time of infection, or more generally “exposure,” onsets cannot be ascertained based on hospitalization data. Only imprecise markers of the timing of infection onsets are available. Although there is a large literature on measurement error in the predictors in regression modeling, to date, there is no work on measurement error on the timing of a time-varying exposure to our knowledge. Thus, we propose a new method, the measurement error case series (MECS) models, to account for measurement error in time-varying exposure onsets. We characterized the general nature of bias resulting from estimation that ignores measurement error and proposed a bias-corrected estimation for the MECS models. We examined in detail the accuracy of the proposed method to estimate the relative incidence of cardiovascular events. Hospitalization data from the United States Renal Data System, which captures nearly all (>99%) patients with end-stage renal disease in the United States over time, are used to illustrate the proposed method. The results suggest that the estimate of the relative incidence of cardiovascular events during the 30 days after infections, a period where acute effects of infection on vascular endothelium may be most pronounced, is substantially attenuated in the presence of infection onset measurement error.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2012.695648 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1310-1323

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2012.695648

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1310-1323