EconPapers    
Economics at your fingertips  
 

A Stochastic Model for Calibrating the Survival Benefit of Screen-Detected Cancers

Hsiu-Hsi Chen, Amy Ming-Fang Yen and Laszlo Tabár

Journal of the American Statistical Association, 2012, vol. 107, issue 500, 1339-1359

Abstract: Comparison of the survival of clinically detected and screen-detected cancer cases from either population-based service screening programs or opportunistic screening is often distorted by both lead-time and length biases. Both are correlated with each other and are also affected by measurement errors and tumor attributes such as regional lymph node spread. We propose a general stochastic approach to calibrate the survival benefit of screen-detected cancers related to both biases, measurement errors, and tumor attributes. We apply our proposed method to breast cancer screening data from one arm of the Swedish Two-County trial in the trial period together with the subsequent service screening for the same cohort. When there is no calibration, the results—assuming a constant (exponentially distributed) post-lead-time hazard rate (i.e., a homogeneous stochastic process)—show a 57% reduction in breast cancer death over 25 years. After correction, the reduction was 30%, with approximately 12% of the overestimation being due to lead-time bias and 15% due to length bias. The additional impacts of measurement errors (sensitivity and specificity) depend on the type of the proposed model and follow-up time. The corresponding analysis when the Weibull distribution was applied—relaxing the assumption of a constant hazard rate—yielded similar findings and lacked statistical significance compared with the exponential model. The proposed calibration approach allows the benefit of a service cancer screening program to be fairly evaluated. This article has supplementary materials online.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2012.716335 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1339-1359

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2012.716335

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1339-1359