Estimating Identification Disclosure Risk Using Mixed Membership Models
Daniel Manrique-Vallier and
Jerome P. Reiter
Journal of the American Statistical Association, 2012, vol. 107, issue 500, 1385-1394
Abstract:
Statistical agencies and other organizations that disseminate data are obligated to protect data subjects’ confidentiality. For example, ill-intentioned individuals might link data subjects to records in other databases by matching on common characteristics (keys). Successful links are particularly problematic for data subjects with combinations of keys that are unique in the population. Hence, as part of their assessments of disclosure risks, many data stewards estimate the probabilities that sample uniques on sets of discrete keys are also population uniques on those keys. This is typically done using log-linear modeling on the keys. However, log-linear models can yield biased estimates of cell probabilities for sparse contingency tables with many zero counts, which often occurs in databases with many keys. This bias can result in unreliable estimates of probabilities of uniqueness and, hence, misrepresentations of disclosure risks. We propose an alternative to log-linear models for datasets with sparse keys based on a Bayesian version of grade of membership (GoM) models. We present a Bayesian GoM model for multinomial variables and offer a Markov chain Monte Carlo algorithm for fitting the model. We evaluate the approach by treating data from a recent U.S. Census Bureau public use microdata sample as a population, taking simple random samples from that population, and benchmarking estimated probabilities of uniqueness against population values. Compared to log-linear models, GoM models provide more accurate estimates of the total number of uniques in the samples. Additionally, they offer record-level predictions of uniqueness that dominate those based on log-linear models. This article has online supplementary materials.
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2012.710508 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1385-1394
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2012.710508
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().