Consistent High-Dimensional Bayesian Variable Selection via Penalized Credible Regions
Howard D. Bondell and
Brian J. Reich
Journal of the American Statistical Association, 2012, vol. 107, issue 500, 1610-1624
Abstract:
For high-dimensional data, particularly when the number of predictors greatly exceeds the sample size, selection of relevant predictors for regression is a challenging problem. Methods such as sure screening, forward selection, or penalized regressions are commonly used. Bayesian variable selection methods place prior distributions on the parameters along with a prior over model space, or equivalently, a mixture prior on the parameters having mass at zero. Since exhaustive enumeration is not feasible, posterior model probabilities are often obtained via long Markov chain Monte Carlo (MCMC) runs. The chosen model can depend heavily on various choices for priors and also posterior thresholds. Alternatively, we propose a conjugate prior only on the full model parameters and use sparse solutions within posterior credible regions to perform selection. These posterior credible regions often have closed-form representations, and it is shown that these sparse solutions can be computed via existing algorithms. The approach is shown to outperform common methods in the high-dimensional setting, particularly under correlation. By searching for a sparse solution within a joint credible region, consistent model selection is established. Furthermore, it is shown that, under certain conditions, the use of marginal credible intervals can give consistent selection up to the case where the dimension grows exponentially in the sample size. The proposed approach successfully accomplishes variable selection in the high-dimensional setting, while avoiding pitfalls that plague typical Bayesian variable selection methods.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2012.716344 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1610-1624
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2012.716344
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().