On a Principal Varying Coefficient Model
Qian Jiang,
Hansheng Wang,
Yingcun Xia and
Guohua Jiang ()
Journal of the American Statistical Association, 2013, vol. 108, issue 501, 228-236
Abstract:
We propose a novel varying coefficient model (VCM), called principal varying coefficient model (PVCM), by characterizing the varying coefficients through linear combinations of a few principal functions. Compared with the conventional VCM, PVCM reduces the actual number of nonparametric functions and thus has better estimation efficiency. Compared with the semivarying coefficient model (SVCM), PVCM is more flexible but with the same estimation efficiency when the number of principal functions in PVCM and the number of varying coefficients in SVCM are the same. Model estimation and identification are investigated, and the better estimation efficiency is justified theoretically. Incorporating the estimation with the L 1 penalty, variables in the linear combinations can be selected automatically, and hence, the estimation efficiency can be further improved. Numerical experiments suggest that the model together with the estimation method is useful even when the number of covariates is large. Supplementary materials for this article are available online.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2012.736904 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:108:y:2013:i:501:p:228-236
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2012.736904
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().