EconPapers    
Economics at your fingertips  
 

Reconstructing Past Populations With Uncertainty From Fragmentary Data

Mark C. Wheldon, Adrian E. Raftery, Samuel J. Clark and Patrick Gerland

Journal of the American Statistical Association, 2013, vol. 108, issue 501, 96-110

Abstract: Current methods for reconstructing human populations of the past by age and sex are deterministic or do not formally account for measurement error. We propose a method for simultaneously estimating age-specific population counts, fertility rates, mortality rates, and net international migration flows from fragmentary data that incorporates measurement error. Inference is based on joint posterior probability distributions that yield fully probabilistic interval estimates. It is designed for the kind of data commonly collected in modern demographic surveys and censuses. Population dynamics over the period of reconstruction are modeled by embedding formal demographic accounting relationships in a Bayesian hierarchical model. Informative priors are specified for vital rates, migration rates, population counts at baseline, and their respective measurement error variances. We investigate calibration of central posterior marginal probability intervals by simulation and demonstrate the method by reconstructing the female population of Burkina Faso from 1960 to 2005. Supplementary materials for this article are available online and the method is implemented in the R package "popReconstruct."

Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2012.737729 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:108:y:2013:i:501:p:96-110

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2012.737729

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:108:y:2013:i:501:p:96-110