Semiparametric Efficient and Robust Estimation of an Unknown Symmetric Population Under Arbitrary Sample Selection Bias
Yanyuan Ma,
Mijeong Kim and
Marc G. Genton
Journal of the American Statistical Association, 2013, vol. 108, issue 503, 1090-1104
Abstract:
We propose semiparametric methods to estimate the center and shape of a symmetric population when a representative sample of the population is unavailable due to selection bias. We allow an arbitrary sample selection mechanism determined by the data collection procedure, and we do not impose any parametric form on the population distribution. Under this general framework, we construct a family of consistent estimators of the center that is robust to population model misspecification, and we identify the efficient member that reaches the minimum possible estimation variance. The asymptotic properties and finite sample performance of the estimation and inference procedures are illustrated through theoretical analysis and simulations. A data example is also provided to illustrate the usefulness of the methods in practice.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2013.816184 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:108:y:2013:i:503:p:1090-1104
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2013.816184
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().