Frailty Models for Familial Risk With Application to Breast Cancer
Malka Gorfine*,
Li Hsu* and
Giovanni Parmigiani
Journal of the American Statistical Association, 2013, vol. 108, issue 504, 1205-1215
Abstract:
In evaluating familial risk for disease we have two main statistical tasks: assessing the probability of carrying an inherited genetic mutation conferring higher risk, and predicting the absolute risk of developing diseases over time for those individuals whose mutation status is known. Despite substantial progress, much remains unknown about the role of genetic and environmental risk factors, about the sources of variation in risk among families that carry high-risk mutations, and about the sources of familial aggregation beyond major Mendelian effects. These sources of heterogeneity contribute substantial variation in risk across families. In this article we present simple and efficient methods for accounting for this variation in familial risk assessment. Our methods are based on frailty models. We implemented them in the context of generalizing Mendelian models of cancer risk, and compared our approaches to others that do not consider heterogeneity across families. Our extensive simulation study demonstrates that when predicting the risk of developing a disease over time conditional on carrier status, accounting for heterogeneity results in a substantial improvement in the area under the curve of the receiver operating characteristic. On the other hand, the improvement for carriership probability estimation is more limited. We illustrate the utility of the proposed approach through the analysis of BRCA1 and BRCA2 mutation carriers in the Washington Ashkenazi Kin-Cohort Study of Breast Cancer. Supplementary materials for this article are available online.
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2013.818001 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:108:y:2013:i:504:p:1205-1215
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2013.818001
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().