Bayesian Hierarchical Modeling of the HIV Evolutionary Response to Therapy
Shane T. Jensen,
Jared Park,
Alexander F. Braunstein and
Jon Mcauliffe
Journal of the American Statistical Association, 2013, vol. 108, issue 504, 1230-1242
Abstract:
A major challenge for the treatment of human immunodeficiency virus (HIV) infection is the development of therapy-resistant strains. We present a statistical model that quantifies the evolution of HIV populations when exposed to particular therapies. A hierarchical Bayesian approach is used to estimate differences in rates of nucleotide changes between treatment- and control-group sequences. Each group's rates are allowed to vary spatially along the HIV genome. We employ a coalescent structure to address the sequence diversity within the treatment and control HIV populations. We evaluate the model in simulations and estimate HIV evolution in two different applications: a conventional drug therapy and an antisense gene therapy. In both studies, we detect evidence of evolutionary escape response in the HIV population. Supplementary materials for this article are available online.
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2013.830449 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:108:y:2013:i:504:p:1230-1242
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2013.830449
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().