Sampling for Conditional Inference on Network Data
Jingfei Zhang and
Yuguo Chen
Journal of the American Statistical Association, 2013, vol. 108, issue 504, 1295-1307
Abstract:
Random graphs with given vertex degrees have been widely used as a model for many real-world complex networks. However, both statistical inference and analytic study of such networks present great challenges. In this article, we propose a new sequential importance sampling method for sampling networks with a given degree sequence. These samples can be used to approximate closely the null distributions of a number of test statistics involved in such networks and provide an accurate estimate of the total number of networks with given vertex degrees. We study the asymptotic behavior of the proposed algorithm and prove that the importance weight remains bounded as the size of the graph grows. This property guarantees that the proposed sampling algorithm can still work efficiently even for large sparse graphs. We apply our method to a range of examples to demonstrate its efficiency in real problems.
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2012.758587 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:108:y:2013:i:504:p:1295-1307
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2012.758587
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().