EconPapers    
Economics at your fingertips  
 

Bayesian Modeling of Temporal Dependence in Large Sparse Contingency Tables

Tsuyoshi Kunihama and David B. Dunson

Journal of the American Statistical Association, 2013, vol. 108, issue 504, 1324-1338

Abstract: It is of interest in many applications to study trends over time in relationships among categorical variables, such as age group, ethnicity, religious affiliation, political party, and preference for particular policies. At each time point, a sample of individuals provides responses to a set of questions, with different individuals sampled at each time. In such settings, there tend to be an abundance of missing data and the variables being measured may change over time. At each time point, we obtained a large sparse contingency table, with the number of cells often much larger than the number of individuals being surveyed. To borrow information across time in modeling large sparse contingency tables, we propose a Bayesian autoregressive tensor factorization approach. The proposed model relies on a probabilistic Parafac factorization of the joint pmf characterizing the categorical data distribution at each time point, with autocorrelation included across times. We develop efficient computational methods that rely on Markov chain Monte Carlo. The methods are evaluated through simulation examples and applied to social survey data. Supplementary materials for this article are available online.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2013.823866 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:108:y:2013:i:504:p:1324-1338

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2013.823866

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:108:y:2013:i:504:p:1324-1338