Multivariate Density Estimation by Bayesian Sequential Partitioning
Luo Lu,
Hui Jiang and
Wing H. Wong
Journal of the American Statistical Association, 2013, vol. 108, issue 504, 1402-1410
Abstract:
Consider a class of densities that are piecewise constant functions over partitions of the sample space defined by sequential coordinate partitioning. We introduce a prior distribution for a density in this function class and derive in closed form the marginal posterior distribution of the corresponding partition. A computationally efficient method, based on sequential importance sampling, is presented for the inference of the partition from this posterior distribution. Compared to traditional approaches such as the kernel method or the histogram, the Bayesian sequential partitioning (BSP) method proposed here is capable of providing much more accurate estimates when the sample space is of moderate to high dimension. We illustrate this by simulated as well as real data examples. The examples also demonstrate how BSP can be used to design new classification methods competitive with the state of the art.
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2013.813389 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:108:y:2013:i:504:p:1402-1410
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2013.813389
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().