EconPapers    
Economics at your fingertips  
 

Locally Adaptive Bayes Nonparametric Regression via Nested Gaussian Processes

Bin Zhu and David B. Dunson

Journal of the American Statistical Association, 2013, vol. 108, issue 504, 1445-1456

Abstract: We propose a nested Gaussian process (nGP) as a locally adaptive prior for Bayesian nonparametric regression. Specified through a set of stochastic differential equations (SDEs), the nGP imposes a Gaussian process prior for the function's m th-order derivative. The nesting comes in through including a local instantaneous mean function, which is drawn from another Gaussian process inducing adaptivity to locally varying smoothness. We discuss the support of the nGP prior in terms of the closure of a reproducing kernel Hilbert space, and consider theoretical properties of the posterior. The posterior mean under the nGP prior is shown to be equivalent to the minimizer of a nested penalized sum-of-squares involving penalties for both the global and local roughness of the function. Using highly efficient Markov chain Monte Carlo for posterior inference, the proposed method performs well in simulation studies compared to several alternatives, and is scalable to massive data, illustrated through a proteomics application.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2013.838568 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:108:y:2013:i:504:p:1445-1456

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2013.838568

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:108:y:2013:i:504:p:1445-1456