Cure Rate Quantile Regression for Censored Data With a Survival Fraction
Yuanshan Wu and
Guosheng Yin
Journal of the American Statistical Association, 2013, vol. 108, issue 504, 1517-1531
Abstract:
Censored quantile regression offers a valuable complement to the traditional Cox proportional hazards model for survival analysis. Survival times tend to be right-skewed, particularly when there exists a substantial fraction of long-term survivors who are either cured or immune to the event of interest. For survival data with a cure possibility, we propose cure rate quantile regression under the common censoring scheme that survival times and censoring times are conditionally independent given the covariates. In a mixture formulation, we apply censored quantile regression to model the survival times of susceptible subjects and logistic regression to model the indicators of whether patients are susceptible. We develop two estimation methods using martingale-based equations: One approach fully uses all regression quantiles by iterating estimation between the cure rate and quantile regression parameters; and the other separates the two via a nonparametric kernel smoothing estimator. We establish the uniform consistency and weak convergence properties for the estimators obtained from both methods. The proposed model is evaluated through extensive simulation studies and illustrated with a bone marrow transplantation data example. Technical proofs of key theorems are given in Appendices A, B, and C, while those of lemmas and additional simulation studies on model misspecification and comparisons with other models are provided in the online Supplementary Materials A and B.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2013.837368 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:108:y:2013:i:504:p:1517-1531
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2013.837368
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().