EconPapers    
Economics at your fingertips  
 

Quantile Association Regression Models

Ruosha Li, Yu Cheng and Jason P. Fine

Journal of the American Statistical Association, 2014, vol. 109, issue 505, 230-242

Abstract: It is often important to study the association between two continuous variables. In this work, we propose a novel regression framework for assessing conditional associations on quantiles. We develop general methodology which permits covariate effects on both the marginal quantile models for the two variables and their quantile associations. The proposed quantile copula models have straightforward interpretation, facilitating a comprehensive view of association structure which is much richer than that based on standard product moment and rank correlations. We show that the resulting estimators are uniformly consistent and weakly convergent as a process of the quantile index. Simple variance estimators are presented which perform well in numerical studies. Extensive simulations and a real data example demonstrate the practical utility of the methodology. Supplementary materials for this article are available online.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2013.847375 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:109:y:2014:i:505:p:230-242

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2013.847375

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:109:y:2014:i:505:p:230-242