EconPapers    
Economics at your fingertips  
 

Estimating the Lifetime Risk of Dementia in the Canadian Elderly Population Using Cross-Sectional Cohort Survival Data

Marco Carone, Masoud Asgharian and Nicholas P. Jewell

Journal of the American Statistical Association, 2014, vol. 109, issue 505, 24-35

Abstract: Dementia is one of the world's major public health challenges. The lifetime risk of dementia is the proportion of individuals who ever develop dementia during their lifetime. Despite its importance to epidemiologists and policy-makers, this measure does not seem to have been estimated in the Canadian population. Data from a birth cohort study of dementia are not available. Instead, we must rely on data from the Canadian Study of Health and Aging, a large cross-sectional study of dementia with follow-up for survival. These data present challenges because they include substantial loss to follow-up and are not representatively drawn from the target population because of structural sampling biases. A first bias is imparted by the cross-sectional sampling scheme, while a second bias is a result of stratified sampling. Estimation of the lifetime risk and related quantities in the presence of these biases has not been previously addressed in the literature. We develop and study nonparametric estimators of the lifetime risk, the remaining lifetime risk, and cumulative risk at specific ages, accounting for these complexities. In particular, we reveal the fact that estimation of the lifetime risk is invariant to stratification by current age at sampling. We present simulation results validating our methodology, and provide novel facts about the epidemiology of dementia in Canada using data from the Canadian Study of Health and Aging. Supplementary materials for this article are available online.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2013.859076 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:109:y:2014:i:505:p:24-35

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2013.859076

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:109:y:2014:i:505:p:24-35