EconPapers    
Economics at your fingertips  
 

Principal Flows

Victor M. Panaretos, Tung Pham and Zhigang Yao

Journal of the American Statistical Association, 2014, vol. 109, issue 505, 424-436

Abstract: We revisit the problem of extending the notion of principal component analysis (PCA) to multivariate datasets that satisfy nonlinear constraints, therefore lying on Riemannian manifolds. Our aim is to determine curves on the manifold that retain their canonical interpretability as principal components, while at the same time being flexible enough to capture nongeodesic forms of variation. We introduce the concept of a principal flow, a curve on the manifold passing through the mean of the data, and with the property that, at any point of the curve, the tangent velocity vector attempts to fit the first eigenvector of a tangent space PCA locally at that same point, subject to a smoothness constraint. That is, a particle flowing along the principal flow attempts to move along a path of maximal variation of the data, up to smoothness constraints. The rigorous definition of a principal flow is given by means of a Lagrangian variational problem, and its solution is reduced to an ODE problem via the Euler--Lagrange method. Conditions for existence and uniqueness are provided, and an algorithm is outlined for the numerical solution of the problem. Higher order principal flows are also defined. It is shown that global principal flows yield the usual principal components on a Euclidean space. By means of examples, it is illustrated that the principal flow is able to capture patterns of variation that can escape other manifold PCA methods.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2013.849199 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:109:y:2014:i:505:p:424-436

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2013.849199

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:109:y:2014:i:505:p:424-436