Bayes Variable Selection in Semiparametric Linear Models
Suprateek Kundu and
David B. Dunson
Journal of the American Statistical Association, 2014, vol. 109, issue 505, 437-447
Abstract:
There is a rich literature on Bayesian variable selection for parametric models. Our focus is on generalizing methods and asymptotic theory established for mixtures of g -priors to semiparametric linear regression models having unknown residual densities. Using a Dirichlet process location mixture for the residual density, we propose a semiparametric g -prior which incorporates an unknown matrix of cluster allocation indicators. For this class of priors, posterior computation can proceed via a straightforward stochastic search variable selection algorithm. In addition, Bayes' factor and variable selection consistency is shown to result under a class of proper priors on g even when the number of candidate predictors p is allowed to increase much faster than sample size n , while making sparsity assumptions on the true model size.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.881153 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:109:y:2014:i:505:p:437-447
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2014.881153
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().