Enriched Stick-Breaking Processes for Functional Data
Bruno Scarpa and
David B. Dunson
Journal of the American Statistical Association, 2014, vol. 109, issue 506, 647-660
Abstract:
In many applications involving functional data, prior information is available about the proportion of curves having different attributes. It is not straightforward to include such information in existing procedures for functional data analysis. Generalizing the functional Dirichlet process (FDP), we propose a class of stick-breaking priors for distributions of functions. These priors incorporate functional atoms drawn from constrained stochastic processes. The stick-breaking weights are specified to allow user-specified prior probabilities for curve attributes, with hyperpriors accommodating uncertainty. Compared with the FDP, the random distribution is enriched for curves having attributes known to be common. Theoretical properties are considered, methods are developed for posterior computation, and the approach is illustrated using data on temperature curves in menstrual cycles.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2013.866564 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:109:y:2014:i:506:p:647-660
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2013.866564
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().