The Sparse MLE for Ultrahigh-Dimensional Feature Screening
Chen Xu and
Jiahua Chen
Journal of the American Statistical Association, 2014, vol. 109, issue 507, 1257-1269
Abstract:
Feature selection is fundamental for modeling the high-dimensional data, where the number of features can be huge and much larger than the sample size. Since the feature space is so large, many traditional procedures become numerically infeasible. It is hence essential to first remove most apparently noninfluential features before any elaborative analysis. Recently, several procedures have been developed for this purpose, which include the sure-independent-screening (SIS) as a widely used technique. To gain computational efficiency, the SIS screens features based on their individual predicting power. In this article, we propose a new screening method via the sparsity-restricted maximum likelihood estimator (SMLE). The new method naturally takes the joint effects of features in the screening process, which gives itself an edge to potentially outperform the existing methods. This conjecture is further supported by the simulation studies under a number of modeling settings. We show that the proposed method is screening consistent in the context of ultrahigh-dimensional generalized linear models. Supplementary materials for this article are available online.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2013.879531 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:109:y:2014:i:507:p:1257-1269
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2013.879531
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().