Optimizing Sedative Dose in Preterm Infants Undergoing Treatment for Respiratory Distress Syndrome
Peter F. Thall,
Hoang Q. Nguyen,
Sarah Zohar and
Pierre Maton
Journal of the American Statistical Association, 2014, vol. 109, issue 507, 931-943
Abstract:
The intubation-surfactant-extubation (INSURE) procedure is used worldwide to treat preterm newborn infants suffering from respiratory distress syndrome, which is caused by an insufficient amount of the chemical surfactant in the lungs. With INSURE, the infant is intubated, surfactant is administered via the tube to the trachea, and at completion the infant is extubated. This improves the infant's ability to breathe and thus decreases the risk of long-term neurological or motor disabilities. To perform the intubation safely, the newborn infant first must be sedated. Despite extensive experience with INSURE, there is no consensus on what sedative dose is best. This article describes a Bayesian sequentially adaptive design for a multi-institution clinical trial to optimize the sedative dose given to preterm infants undergoing the INSURE procedure. The design is based on three clinical outcomes, two efficacy and one adverse, using elicited numerical utilities of the eight possible elementary outcomes. A flexible Bayesian parametric trivariate dose-outcome model is assumed, with the prior derived from elicited mean outcome probabilities. Doses are chosen adaptively for successive cohorts of infants using posterior mean utilities, subject to safety and efficacy constraints. A computer simulation study of the design is presented. Supplementary materials for this article are available online.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.904789 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:109:y:2014:i:507:p:931-943
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2014.904789
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().