EconPapers    
Economics at your fingertips  
 

Estimating Ocean Circulation: An MCMC Approach With Approximated Likelihoods via the Bernoulli Factory

Radu Herbei and L. Mark Berliner

Journal of the American Statistical Association, 2014, vol. 109, issue 507, 944-954

Abstract: We provide a Bayesian analysis of ocean circulation based on data collected in the South Atlantic Ocean. The analysis incorporates a reaction-diffusion partial differential equation that is not solvable in closed form. This leads to an intractable likelihood function. We describe a novel Markov chain Monte Carlo approach that does not require a likelihood evaluation. Rather, we use unbiased estimates of the likelihood and a Bernoulli factory to decide whether or not proposed states are accepted. The variates required to estimate the likelihood function are obtained via a Feynman-Kac representation. This lifts the common restriction of selecting a regular grid for the physical model and eliminates the need for data preprocessing. We implement our approach using the parallel graphic processing unit (GPU) computing environment.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.914439 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:109:y:2014:i:507:p:944-954

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2014.914439

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:109:y:2014:i:507:p:944-954