EconPapers    
Economics at your fingertips  
 

Bayesian Emulation and Calibration of a Dynamic Epidemic Model for A/H1N1 Influenza

Marian Farah, Paul Birrell, Stefano Conti and Daniela De Angelis

Journal of the American Statistical Association, 2014, vol. 109, issue 508, 1398-1411

Abstract: In this article, we develop a Bayesian framework for parameter estimation of a computationally expensive dynamic epidemic model using time series epidemic data. Specifically, we work with a model for A/H1N1 influenza, which is implemented as a deterministic computer simulator , taking as input the underlying epidemic parameters and calculating the corresponding time series of reported infections. To obtain Bayesian inference for the epidemic parameters, the simulator is embedded in the likelihood for the reported epidemic data. However, the simulator is computationally slow, making it impractical to use in Bayesian estimation where a large number of simulator runs is required. We propose an efficient approximation to the simulator using an emulator , a statistical model that combines a Gaussian process (GP) prior for the output function of the simulator with a dynamic linear model (DLM) for its evolution through time. This modeling framework is both flexible and tractable, resulting in efficient posterior inference through Markov chain Monte Carlo (MCMC). The proposed dynamic emulator is then used in a calibration procedure to obtain posterior inference for the parameters of the influenza epidemic.

Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.934453 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:109:y:2014:i:508:p:1398-1411

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2014.934453

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:109:y:2014:i:508:p:1398-1411