EconPapers    
Economics at your fingertips  
 

Joint Modeling and Clustering Paired Generalized Longitudinal Trajectories With Application to Cocaine Abuse Treatment Data

Hui Huang, Yehua Li and Yongtao Guan

Journal of the American Statistical Association, 2014, vol. 109, issue 508, 1412-1424

Abstract: In a cocaine dependence treatment study, we have paired binary longitudinal trajectories that record the cocaine use patterns of each patient before and after a treatment. To better understand the drug-using behaviors among the patients, we propose a general framework based on functional data analysis to jointly model and cluster these paired non-Gaussian longitudinal trajectories. Our approach assumes that the response variables follow distributions from the exponential family, with the canonical parameters determined by some latent Gaussian processes. To reduce the dimensionality of the latent processes, we express them by a truncated Karhunen-Lóeve (KL) expansion allowing the mean and covariance functions to be different across clusters. We further represent the mean and eigenfunctions functions by flexible spline bases, and determine the orders of the truncated KL expansions using data-driven methods. By treating the cluster membership as a missing value, we cluster the cocaine use trajectories by a likelihood-based approach. The cluster membership and parameter estimates are jointly estimated by a Monte Carlo EM algorithm with Gibbs sampling steps. We discover subgroups of patients with distinct behaviors in terms of overall probability to use, binge verses periodic use pattern, etc. The joint modeling approach also sheds new lights on relating relapse behavior to baseline pattern in each subgroup. Supplementary materials for this article are available online.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.957286 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:109:y:2014:i:508:p:1412-1424

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2014.957286

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:109:y:2014:i:508:p:1412-1424