Inference for Misspecified Models With Fixed Regressors
Alberto Abadie,
Guido Imbens and
Fanyin Zheng
Journal of the American Statistical Association, 2014, vol. 109, issue 508, 1601-1614
Abstract:
Following the work by Eicker, Huber, and White it is common in empirical work to report standard errors that are robust against general misspecification. In a regression setting, these standard errors are valid for the parameter that minimizes the squared difference between the conditional expectation and a linear approximation, averaged over the population distribution of the covariates. Here, we discuss an alternative parameter that corresponds to the approximation to the conditional expectation based on minimization of the squared difference averaged over the sample, rather than the population, distribution of the covariates. We argue that in some cases this may be a more interesting parameter. We derive the asymptotic variance for this parameter, which is generally smaller than the Eicker-Huber-White robust variance, and propose a consistent estimator for this asymptotic variance. Supplementary materials for this article are available online.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.928218 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:109:y:2014:i:508:p:1601-1614
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2014.928218
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().