EconPapers    
Economics at your fingertips  
 

Spherical Regression Models Using Projective Linear Transformations

Michael Rosenthal, Wei Wu, Eric Klassen and Anuj Srivastava

Journal of the American Statistical Association, 2014, vol. 109, issue 508, 1615-1624

Abstract: This article studies the problem of modeling relationship between two spherical (or directional) random variables in a regression setup. Here the predictor and the response variables are constrained to be on a unit sphere and, due to this nonlinear condition, the standard Euclidean regression models do not apply. Several past papers have studied this problem, termed spherical regression, by modeling the response variable with a von Mises-Fisher (VMF) density with the mean given by a rotation of the predictor variable. The few papers that go beyond rigid rotations are limited to one- or two-dimensional spheres. This article extends the mean transformations to a larger group--the projective linear group of transformations--on unit spheres of arbitrary dimensions, while keeping the VMF density to model the noise. It develops a Newton-Raphson algorithm on the special linear group for estimating the MLE of regression parameter and establishes its asymptotic properties when the sample-size becomes large. Through a variety of experiments, using data taken from projective shape analysis, cloud tracking, etc., and some simulations, this article demonstrates improvements in the prediction and modeling performance of the proposed framework over previously used models. Supplementary materials for this article are available online.

Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.892881 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:109:y:2014:i:508:p:1615-1624

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2014.892881

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:109:y:2014:i:508:p:1615-1624