EconPapers    
Economics at your fingertips  
 

Model-Robust Designs for Quantile Regression

Linglong Kong and Douglas P. Wiens

Journal of the American Statistical Association, 2015, vol. 110, issue 509, 233-245

Abstract: We give methods for the construction of designs for regression models, when the purpose of the investigation is the estimation of the conditional quantile function, and the estimation method is quantile regression. The designs are robust against misspecified response functions, and against unanticipated heteroscedasticity. The methods are illustrated by example, and in a case study in which they are applied to growth charts.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.969427 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:110:y:2015:i:509:p:233-245

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2014.969427

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:110:y:2015:i:509:p:233-245