EconPapers    
Economics at your fingertips  
 

Regularization Methods for High-Dimensional Instrumental Variables Regression With an Application to Genetical Genomics

Wei Lin, Rui Feng and Hongzhe Li

Journal of the American Statistical Association, 2015, vol. 110, issue 509, 270-288

Abstract: In genetical genomics studies, it is important to jointly analyze gene expression data and genetic variants in exploring their associations with complex traits, where the dimensionality of gene expressions and genetic variants can both be much larger than the sample size. Motivated by such modern applications, we consider the problem of variable selection and estimation in high-dimensional sparse instrumental variables models. To overcome the difficulty of high dimensionality and unknown optimal instruments, we propose a two-stage regularization framework for identifying and estimating important covariate effects while selecting and estimating optimal instruments. The methodology extends the classical two-stage least squares estimator to high dimensions by exploiting sparsity using sparsity-inducing penalty functions in both stages. The resulting procedure is efficiently implemented by coordinate descent optimization. For the representative L 1 regularization and a class of concave regularization methods, we establish estimation, prediction, and model selection properties of the two-stage regularized estimators in the high-dimensional setting where the dimensionality of covariates and instruments are both allowed to grow exponentially with the sample size. The practical performance of the proposed method is evaluated by simulation studies and its usefulness is illustrated by an analysis of mouse obesity data. Supplementary materials for this article are available online.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.908125 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:110:y:2015:i:509:p:270-288

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2014.908125

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:110:y:2015:i:509:p:270-288