Risk Classification With an Adaptive Naive Bayes Kernel Machine Model
Jessica Minnier,
Ming Yuan,
Jun S. Liu and
Tianxi Cai
Journal of the American Statistical Association, 2015, vol. 110, issue 509, 393-404
Abstract:
Genetic studies of complex traits have uncovered only a small number of risk markers explaining a small fraction of heritability and adding little improvement to disease risk prediction. Standard single marker methods may lack power in selecting informative markers or estimating effects. Most existing methods also typically do not account for nonlinearity. Identifying markers with weak signals and estimating their joint effects among many noninformative markers remains challenging. One potential approach is to group markers based on biological knowledge such as gene structure. If markers in a group tend to have similar effects, proper usage of the group structure could improve power and efficiency in estimation. We propose a two-stage method relating markers to disease risk by taking advantage of known gene-set structures. Imposing a naive Bayes kernel machine (KM) model, we estimate gene-set specific risk models that relate each gene-set to the outcome in stage I. The KM framework efficiently models potentially nonlinear effects of predictors without requiring explicit specification of functional forms. In stage II, we aggregate information across gene-sets via a regularization procedure. Estimation and computational efficiency is further improved with kernel principal component analysis. Asymptotic results for model estimation and gene-set selection are derived and numerical studies suggest that the proposed procedure could outperform existing procedures for constructing genetic risk models.
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.908778 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:110:y:2015:i:509:p:393-404
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2014.908778
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().