Joint Bayesian Modeling of Binomial and Rank Data for Primate Cognition
Bradley J. Barney,
Federica Amici,
Filippo Aureli,
Josep Call and
Valen E. Johnson
Journal of the American Statistical Association, 2015, vol. 110, issue 510, 573-582
Abstract:
In recent years, substantial effort has been devoted to methods for analyzing data containing mixed response types, but such techniques typically do not include rank data among the response types. Some unique challenges exist in analyzing rank data, particularly when ties are prevalent. We present techniques for jointly modeling binomial and rank data using Bayesian latent variable models. We apply these techniques to compare the cognitive abilities of nonhuman primates based on their performance on 17 cognitive tasks scored on either a rank or binomial scale. To jointly model the rank and binomial responses, we assume that responses are implicitly determined by latent cognitive abilities. We then model the latent variables using random effects models, with identifying restrictions chosen to promote parsimonious prior specification and model inferences. Results from the primate cognitive data are presented to illustrate the methodology. Our results suggest that the ordering of the cognitive abilities of species varies significantly across tasks, suggesting a partially independent evolution of cognitive abilities in primates. Supplementary materials for this article are available online.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2015.1016223 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:110:y:2015:i:510:p:573-582
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2015.1016223
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().