Likelihood Ratio Test for Multi-Sample Mixture Model and Its Application to Genetic Imprinting
Shaoting Li,
Jiahua Chen,
Jianhua Guo,
Bing-Yi Jing,
Shui-Ying Tsang and
Hong Xue
Journal of the American Statistical Association, 2015, vol. 110, issue 510, 867-877
Abstract:
Genomic imprinting is a known aspect of the etiology of many diseases. The imprinting phenomenon depicts differential expression levels of the allele depending on its parental origin. When the parental origin is unknown, the expression level has a finite normal mixture distribution. In such applications, a random sample of expression levels consists of three subsamples according to the number of minor alleles an individual possesses, of which one is the mixture and the other two are homogeneous. This understanding leads to a likelihood ratio test (LRT) for the presence of imprinting. Because of the nonregularity of the finite mixture model, the classical asymptotic conclusions on likelihood-based inference are not applicable. We show that the maximum likelihood estimator of the mixing distribution remains consistent. More interestingly, thanks to the homogeneous subsamples, the LRT statistic has an elegant and rather distinct 0.5χ-super-2 1 + 0.5χ-super-2 2 null limiting distribution. Simulation studies confirm that the limiting distribution provides precise approximations of the finite sample distributions under various parameter settings. The LRT is applied to expression data. Our analyses provide evidence for imprinting for a number of isoform expressions.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.939272 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:110:y:2015:i:510:p:867-877
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2014.939272
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().