EconPapers    
Economics at your fingertips  
 

Testing for Nodal Dependence in Relational Data Matrices

Alexander Volfovsky and Peter D. Hoff

Journal of the American Statistical Association, 2015, vol. 110, issue 511, 1037-1046

Abstract: Relational data are often represented as a square matrix, the entries of which record the relationships between pairs of objects. Many statistical methods for the analysis of such data assume some degree of similarity or dependence between objects in terms of the way they relate to each other. However, formal tests for such dependence have not been developed. We provide a test for such dependence using the framework of the matrix normal model, a type of multivariate normal distribution parameterized in terms of row- and column-specific covariance matrices. We develop a likelihood ratio test (LRT) for row and column dependence based on the observation of a single relational data matrix. We obtain a reference distribution for the LRT statistic, thereby providing an exact test for the presence of row or column correlations in a square relational data matrix. Additionally, we provide extensions of the test to accommodate common features of such data, such as undefined diagonal entries, a nonzero mean, multiple observations, and deviations from normality. Supplementary materials for this article are available online.

Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.965777 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:110:y:2015:i:511:p:1037-1046

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2014.965777

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:110:y:2015:i:511:p:1037-1046