Whittle Likelihood Estimation of Nonlinear Autoregressive Models With Moving Average Residuals
Tianhao Wang and
Yingcun Xia
Journal of the American Statistical Association, 2015, vol. 110, issue 511, 1083-1099
Abstract:
The Whittle likelihood estimation (WLE) has played a fundamental role in the development of both theory and computation of time series analysis. However, WLE is only applicable to models whose theoretical spectral density function (SDF) is known up to the parameters in the models. In this article, we propose a residual-based WLE, called extended WLE (XWLE), which can estimate models with their SDFs only partially available, including many popular time series models with correlated residuals. Asymptotic properties of XWLE are established. In particular, XWLE is asymptotically equivalent to WLE in estimating linear ARMA models, and is also capable of estimating nonlinear AR models with MA residuals and even with exogenous variables. The finite-sample performances of XWLE are checked by simulated examples and real data analysis.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.946513 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:110:y:2015:i:511:p:1083-1099
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2014.946513
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().